一、三角函数有界性的应用(高一、高二)(论文文献综述)
沈艺[1](2021)在《高中生数学抽象素养培养策略研究 ——以函数教学为例》文中研究表明
陈方利[2](2021)在《迁移视角下数学知识对高中物理教学的影响研究 ——以电磁学部分为例》文中研究指明
陈君[3](2021)在《高中数学“深度教学”案例研究 ——以“圆锥曲线的简单几何性质”教学为例》文中研究表明普通高中数学课程标准(2017年版)将原来的“三维目标”转化为“核心素养”,提出不仅要关注学生知识技能的掌握,更关注数学学科核心素养的形成和发展。而深度学习的目标就是注重学生高阶思维能力的养成和对知识的完整建构,继而提升解决数学问题的能力。虽然新课程改革已进行多年,但是“浅层次”和“断层式”的教学现象依然存在,教师如何落实发展学生核心素养和高阶思维能力成为了教育者研究的重要课题之一。基于此,对圆锥曲线简单几何性质教学中存在的问题进行调研和实验。本文通过对圆锥曲线的简单几何性质知识学习中出现的问题深入分析,设计深度学习的教学过程,为高中数学圆锥曲线教学提供参考。过程如下:(1)通过文献分析法研究国内外对深度学习的观点,理清研究的脉络,对深度学习概念、特征进行界定。(2)通过问卷测试了解高二学生圆锥曲线简单几何性质学习情况,发现高中生核心素养缺失等问题;接着对一线教师进行访谈,了解教师对深度学习的理解情况与教学建议。(3)借助测试,找出学生在圆锥曲线简单几何性质学习中存在问题,结合教师访谈分析成因,提出建议。(4)结合建议,以DELC路线为指导设计深度教学流程;(5)对高二某班进行教学实践,借助案例分析法进行调查与分析。研究的主要结论如下:1.学生在教学实验前存在的问题有:(1)大部分学生在圆锥曲线简单几何性质简单应用中SOLO分类水平单一与多元水平占比大约为50%,体现为缺乏完整的知识网络;(2)大部分学生在综合提升中关联水平只占到35%左右,SOLO分类水平在二、三水平人数不高,原因是缺乏批判性思维,不善于转变思维;(3)大部分学生在拓展延伸中关联或抽象拓展水平占比不超过30%,SOLO分类水平普遍较低,具体表现为学生缺乏在复杂情景中迁移应用知识能力;(4)在不同层次的问题里,随着问题层次升高,学生在深度学习的思维水平人数变少,浅层学习的思维水平人数变多。学生没有明确学习动机,学习态度消极,不善于合作与交流是主导原因。2.学生在教学实验后得出结论:(1)学生的圆锥曲线简单几何性质思维水平在各维度上均有不同程度的提升。其中,学生在双曲线或抛物线的拓展延伸中思维从多元结构水平上升1个水平到关联结构水平的人数较多,大约占了测试人数的40%。学生总体上SOLO分类思维水平发展较好,思维方式和思维灵活性逐渐提高,证明了调查研究和实验研究的有效性;(2)学生的思维水平虽然在不停地训练下有所提升,但是思维提升缓慢。能在短时间内提高两个思维水平的题型仅占九分之一,说明跨越多个思维水平短时间内较难实现,需要有计划地长期培养才有机会达成该目标。3.教师课堂问题教学的成因:(1)缺少对学生思维的变式拓展训练,学生思维水平提高阻力大;(2)教学存在片面性,忽视了思维水平螺旋形上升的特点;(3)机械式教学忽视学生数学核心素养培养,SOLO分类水平停留在低水平。
张露露[4](2021)在《中国中学三角函数内容设置变迁研究(1950-2019) ——以人教版教科书为例》文中研究指明作为初、高中阶段数学的重点学习内容,三角函数不仅锻炼学生的函数思维,而且也是将数与形相结合的典范。1950-2019近70年来,伴随着8次教育改革,人民教育出版社发行了29套数学教科书(初中12套,高中17套)。现今,三角函数课程已逐渐系统化,内容编排亦较为完善,而发展是连续的,没有以往教科书的编写经验,就没有之后教科书的改进与优化。因此,本文对1950-2019年“人教版”初、高中数学教科书中三角函数内容的设置变迁进行梳理,研究其变迁特点,以期为今后教科书的编写提供借鉴。本文以1950年以来“人教社”出版的29套初、高中数学教科书中三角函数内容为主要研究对象,以数学课程标准(教学大纲)为背景,运用文献研究法、比较研究法和统计分析法对29套教科书中三角函数内容的变迁进行分析,分别从三角函数定义与相关概念、三角函数的图象与性质、诱导公式、三角函数式的变换、应用(正、余弦定理、例题和习题)以及三角函数章节数学史融入六个方面对1950-2019年间人教版29套中学数学教科书(初中12套,高中17套)中三角函数的变迁进行宏观和微观研究。在占有丰富原始文献的基础上,展现新中国成立70年来中国教科书中三角函数内容的演变过程,更好地掌握三角函数内容,为他人学习和研究数学教科书中的三角函数内容提供参考,并以期为中国数学教科书的建设提供借鉴。本文得到如下结论:在三角函数宏观研究上,得出结论:(1)教学目标逐渐具体优化;(2)三角函数所属领域反复变化;(3)课程内容削枝强干。在三角函数微观研究上,得出结论:在三角函数定义与相关概念的内容设置变迁方面:(1)注重内容的完整性;(2)强调教学内容的简洁性。在三角函数的图象与性质内容设置变迁方面:(1)内容设置从被动接受逐渐转向自主探究;(2)强调三角函数图象与性质的主体地位倾向。在诱导公式内容设置变迁方面:(1)从“分散”到“集中”;(2)公式的证明由直观感知逐渐偏向于逻辑论证。在三角函数式的变换内容设置变迁方面:(1)由记忆应用到推理运用;(2)探究证明过程中思维的经济化倾向。在初、高中例题与习题变迁方面:(1)例题、习题设置呈现多类型、多方式编排;(2)根据教学大纲(课程标准)与时代变化设置;(3)以简单符号运算为主,注重运算能力的考查。在三角函数章节中数学史融入变迁方面:(1)按照教学大纲(课程标准)的要求编写;(2)编排位置由开篇到节末;(3)内容由总括到具体;(4)由爱国主义过渡到多元文化。
张伟娜[5](2020)在《高一学生数学运算能力发展的调查研究 ——以函数学习为例》文中认为《普通高中数学课程标准》(2017年版)提出了数学学科的六大核心素养,数学运算能力作为六大核心素养之一,是学生在数学学习中需要具备的基本能力。高一是学生学习的基础阶段,也是学生培养数学运算能力的重要阶段。函数作为贯穿高中数学课程的主线之一,有着很重要的地位。通过在实习学校与实践导师的交流及批改学生作业的过程中,发现高一学生的数学运算能力仍存在一些问题,学生在函数内容方面的掌握也有些薄弱。因此,本研究通过对文献的梳理,以函数为载体进行编制测试卷和问卷,并采取访谈的形式,了解高一学生在数学运算能力方面的现状以及分析存在的问题和原因,并对此提出相应的对策。本研究采用文献研究法、测验调查法、问卷调查法及访谈法,主要分三个阶段进行:(1)通过对文献的梳理,并结合《高中数学考试大纲》及《新课标》中对函数内容及在数学运算能力方面的要求,对人教版必修一和必修四教材中的函数部分的知识点进行筛选和整理,编制一份高一学生数学运算能力测试卷,同时辅以调查问卷,了解学生在数学运算能力方面的现状;(2)抽取开封市四所中学的480名高一学生作为调查对象,发放测试卷及问卷,并对教师和学生进行访谈;(3)对数据进行回收、整理及分析。最终结合测试卷、问卷的数据结果分析、对测试卷中学生出现的典型错误分析以及对教师、学生的访谈结果分析,对高一学生在数学运算方面存在的问题以及原因做进一步的讨论与分析,并给出建议。通过对测试卷进行数据分析,发现:(1)高一学生的数学运算能力表现一般,成绩呈近似正态分布,个体之间存在较大的差异;(2)学生在公式、法则等基础知识的应用能力相对较强一点,但是对运算对象的理解、选择合适的运算方法、应用数学思想方法求解问题的能力相对较弱;(3)不同班级的学生在数学运算能力方面存在显着性差异,理科生的数学运算能力显着高于文科生的数学运算能力;(4)不同性别的学生在数学运算能力方面存在显着性差异,女生的数学运算能力要明显高于男生的数学运算能力。从问卷的数据分析可以了解到:(1)高一学生在运算习惯方面表现一般,在知识学习和思想意识方面次之,在兴趣和态度方面较差,教师教学对文理科学生的数学运算能力影响不是很大;(2)不同班级的学生在兴趣和态度、基础知识、学习习惯三个方面均存在显着性差异;(3)不同性别的学生在兴趣和态度、知识学习和思想意识两个方面都存在显着性差异;(4)不同层次的学校在教师教学方面达到显着性水平。通过对学生在测试卷中出现的典型错误以及问卷数据的分析,发现在所调查的这四所学校中,高一学生的数学运算能力仍然存在一些问题:(1)学生对运算对象的理解能力仍需提升;(2)学生对基础知识的理解及应用有待提高;(3)学生选择合适运算方法的能力稍有欠缺;(4)学生对数学思想方法应用不到位。根据研究结果,本研究对提升高一学生在函数方面的运算能力给出了相应的对策:(1)完善学生认知结构,加强基础教学;(2)重视对数学思想方法的归纳积累;(3)重视对学生非智力因素的培养,主要包括对学生的数学运算兴趣、意志以及运算习惯方面的培养;(4)改变教师教学观念,加强教师教研交流学习。
柯佼[6](2020)在《高中生应用数学知识解决物理问题的研究》文中进行了进一步梳理数学和物理的联系非常紧密。很多物理问题的解决需要借助于数学知识进行相应的推导和论证,高中物理考试大纲中也明确指出对相应能力的考查,高考中需要用到数学知识解决的物理问题也很多,高校物理课程中还专门设立《物理数学方法》的课程。但是目前在我国物理和数学是两门彼此独立的学科,在日常教学过程中,笔者也切实感受到高中生因应用数学知识能力不足所带来的物理学习障碍。因此,针对这个问题进行研究非常必要。本文主要使用的是文献分析、问卷调查、访谈调查、文本调查和经验总结这几种研究方法。通过对高中生应用数学知识解决物理能力的现状的调查,找到学生感到困难的原因,并结合自己的教学经验和文献调研针对其中的重难点模块以专题形式进行研究,给出教学建议,从而突破这一教学的重难点。论文具体研究内容如下:1.调查高中生在物理学习时应用数学知识的现状:通过学生问卷和教师访谈的方式对华中师范大学龙岗附属中学的师生进行调查,了解一线教师、学生对物理学习中应用数学知识的认识程度和具体实施情况,以及实施过程中的困难,确定研究重点;2.调查高中数学、物理的课程进度安排从而确定知识衔接的内容及可行性;3.研读高中物理、数学教材并统计高中物理课程学习过程中所需的数学知识。按照课本章节的顺序统计出各个章节所需要的数学知识和数学思想,解决高中物理哪些知识板块需要用到哪些数学知识这一问题,并根据两门课程的进度安排以及课程内容提出了相应的教学建议;4.根据调查和统计结果显示,应用最多的数学知识是矢量、方程(组)、三角函数这三个模块,其次是函数、平面几何、解析几何这三个模块。最难的是函数、导数与积分、解析几何、方程(组)这四个模块。其次是平面几何、三角函数这两个模块。综上,为了突破这一难题,以专题模块形式对几大模块进行整理。每一个模块总结了涉及的核心数学知识点,并针对学生在物理学习中的重难点问题以典型问题或例题的形式呈现,进行分析、归纳、总结,希望给物理教师的教学提供素材和借鉴。
董晓明[7](2020)在《高中数学数列问题的探究》文中认为数列是中学数学与高等数学相衔接的重要过度,它在高中数学及高考中占有相当重要的地位,且在高等数学中,数列的极限思想有更加广泛的应用.在2010-2018年全国高考理科数学卷Ⅰ、Ⅱ中,对于数列的考查均比较简单,而在2019年数学卷Ⅰ中,数列以一种全新的考查形式出现在大众面前.因此,在这种变革之下,数列课程在高中数学教学中更应该引起重视.教师必须深入研究如何把握数列教学的难易程度,以及是否应该为学生专供一些偏难题型.本文立足于当前高中数学教育现状,通过阅读大量文献资料,以及研读高中教材、课程标准、考试大纲与高考真题,结合近十年的高考理科数学真题,从基础知识、核心素养、思想方法、数列与数学文化这四个方面对高考数列题进行分析.针对高中数学数列教育中存在的一些问题及应对数列考查形式变革的方法,笔者综合调查问卷及访谈结果,提出以下建议:学生在学习数列时,要注意:(1)定期整理知识框架,形成知识结构;(2)对于繁杂的数列问题,结合教师所讲,用自己的方法将题型分类整理;(3)提升自学能力,养成良好的学习习惯.教师在教授数列知识时,应注意:(1)反复研读课本及《课标》,努力实现从“教教材”转变为“用教材”;(2)注重知识的生成过程,引导学生分析问题;(3)注重教授学习方法;(4)注重渗透数学文化,发展趣味课堂;(5)注重培养学生自学能力,提高学生读书效率;(6)注重纠错方式,减少学生集中犯错;(7)减少猜题,增加复习知识的覆盖面.
梁永丁[8](2020)在《民族地区高中生数学表达能力现状调查研究 ——以湖南省大湘西地区为例》文中研究指明《普通高中数学课程标准(2017年版)》强调“提升学生核心素养,学会用数学的语言表达世界”,学生应掌握数学地思考和表达数学问题的技能.为了对民族地区高中生数学表达能力有清晰的认识,本研究以编制的调查问卷和测试卷为研究工具,以大湘西地区的四所学校的高中师生为调查对象,拟对高中生数学表达能力的现状、问题和对策给出相应回复,为一线教师在帮助学生提升学生的数学表达能力方面提供一定的参考依据.研究采用问卷调查、课堂观察、访谈法、文本分析等研究方法,了解师生对数学表达能力的认识与掌握情况,整理调查研究相关数据,针对调查所表露的问题,给出教学建议,并建构数学表达教学模式,在高三开展教育实证研究,得出以下相应结论.通过学生的调查和访谈反映出:(1)多数学生能意识到数学表达的重要性,但数学课堂交流表达情况不乐观;(2)学生数学语言理解困难的原因不一,语言转换和组织表达能力不足,数学阅读理解能力欠缺;(3)学生的数学知识点混淆、运算能力弱、表达过程冗长、表达不简明、表达内容不完整、书写不规范等,阻碍数学表达能力的发展;(4)不同学校、地域的学生数学表达能力存在差异;(5)不同性别学生的数学表达能力不存在明显差异;(6)除苗族学生外,不同民族学生的数学表达能力差异性不明显;(7)不同年级学生的数学表达能力表现为相邻两个年级之间的差异性不明显,高三年级与高一年级存在显着差异;(8)民族地区高中生的数学表达能力测试成绩与平时的数学成绩显着正相关.通过对教师的调查、访谈以及课堂教学观察得出:(1)多数教师能意识到学生数学表达能力的重要性,培养过程中限于课时紧,无暇顾及学生的数学表达的情况,且没有一套系统地培养学生的数学表达能力教学方法,指导性不强;(2)教师在课堂上的示范性不强,重视数学表达教学不够,关注学生的表达情况较少,缺乏必要的课堂交流表达;(3)课堂上多数学生表达准确性差异性明显,表达简明性较好,但总体表达不够严谨.根据调查所反映的情况,笔者通过建构数学表达能力教学模式,并以此进行教学实证研究,研究发现:学生数学学习成绩显着提升、后进生得到了较多的关注、数学教学质量得以提高.因此,教师应“巧用启发性提示语,启发学生思考与交流”、“重视在教学中的数学写作活动组织与实施”、“重视学生数学表达能力的培养,积累数学表达经验.”
唐宇亮[9](2020)在《高中生数列学习的困难调查研究与解决策略》文中研究指明数列作为一种特殊化的函数,连接着数学抽象与生活实际。在核心素养的推动下,学生对数列的认知不再只是基础知识、基本公式的学习,而是要发现数列中蕴含的函数思想、数形结合思想等,并将其纳入到核心素养中,从而完善整个数列的学习。教师对数列的教学也不再只是将教材中的“纯知识”进行讲解,而是要将数学文化融入数列的教学设计,以探究的教学方式让学生自己去“发现——提出——验证——总结”数列的概念等抽象、难懂的知识,从而贯穿于学生在数列的学习。另外,数列在高考中也扮演着重要的角色,是历年高考的必考内容,并且综合性较高,学生经常在面对数列问题时感到束手无策。因此,教师应该采用怎样的教学方式?学生应该如何有效的学习?成为当下需要思考的问题。本文在查阅与整理国内外相关文献的基础上,以维纳的归因理论、基于建构主义的布鲁纳发现式学习理论与《普通高中数学课程标准(2017版)》为支撑,通过对高中各个年级的学生进行问卷、测试卷的调查和访谈,观察高中生对数列学习的现状,以及对各个年级数学教师的访谈,寻找出高中生对于数列学习时遇到的困难所在,通过与教师的访谈,总结教师与学生在课堂上与课堂外出现的问题与不足,对传统数列教学的弊端进行分析与改善。研究发现,高中三个年级均存在对数列学习上的困难。一方面,学科的抽象严谨性、教师对课堂的把握程度和环境因素都将成为高中生数列学习困难的外部因素;另一方面,学生学习数列时的兴趣与意志、认知与领会和思想上的不足将成为高中生数列学习困难的内部因素。结合上述内外因素,从教师的教与学生的学的角度出发,针对这些因素提出相应的解决策略,是本文重点要阐述的。
林翠[10](2020)在《基于变易理论的高中函数教学设计研究》文中指出函数是高中数学的核心知识,其思想方法贯穿于中学数学课程的始终.由于函数抽象程度较高,问题复杂多变,函数知识一直是教师教学与学生学习的难点.变易理论认为学习就是使学习者聚焦并审辩学习内容的关键特征,变易是审辨的必要条件.通过变易创设有效的学习空间,能够帮助学生多维度地理解学习内容.因此,笔者展开了基于变易理论的高中函数教学设计研究.本研究采用了文献研究法、问卷调查法、访谈法、行动研究法及案例研究法.首先,通过文献研究对变易理论相关知识与函数教学研究现状进行了梳理,得到基于变易理论的高中函数教学设计的具体步骤;其次,通过问卷调查与访谈调查,了解学生对高中函数概念掌握现状,并对高中函数教学内容进行分析,选取函数的概念、函数的单调性以及方程的根与函数的零点三节课作为具体案例详细说明;接着,结合变易理论的观点与函数内容的特点,提出有效的教学策略,完成教学设计;最后,对“函数的概念”一课进行教学实践,通过课堂观察和课后调查,验证基于变易理论教学的有效性.本研究的结论主要有:第一,基于变易理论的高中函数教学设计的具体步骤为:(1)分析教学目标,确定学习内容;(2)诊断学习困难,确定关键特征;(3)针对关键特征,设计变易空间;(4)结合教学策略,进行教学设计;(5)进行教学实践,根据课堂情况,调整学习内容;(6)通过课后测验,检验教学效果.第二,学生对函数概念的掌握情况为:对初中学过的几类具体函数有较深的印象,但对于函数概念仅是机械地记忆,在函数的变量与形式、对应关系、表示法、抽象表示、“非标准形式”等方面存在误解.第三,基于变易理论的高中函数教学策略有:(1)变易设疑,激发学习动机;(2)回顾旧知,激活已有经验;(3)样例变易,审辩关键属性;(4)课堂互议,扩展学习空间;(5)变式练习,强化概念本质;(6)反思升华,提高学习能力.第四,基于变易理论的高中函数教学设计既激发学生对数学学习的积极性,又加深学生对函数知识的理解,优化课堂教学.
二、三角函数有界性的应用(高一、高二)(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、三角函数有界性的应用(高一、高二)(论文提纲范文)
(3)高中数学“深度教学”案例研究 ——以“圆锥曲线的简单几何性质”教学为例(论文提纲范文)
摘要 |
Abstract |
一、绪论 |
1.1 研究背景 |
1.2 研究问题与内容 |
1.3 研究的目的和意义 |
1.4 研究方法 |
二、文献综述 |
2.1 深度学习的国内外研究现状 |
2.2 深度学习与浅层学习的内涵 |
2.3 “浅层次”教学与“断层式”教学的内涵 |
2.4 圆锥曲线教学现状 |
三、理论基础 |
3.1 深度学习的特征 |
3.2 SOLO分类理论 |
3.3 SOLO分类理论与深度学习的联系 |
3.4 深度学习路线 |
四、高中数学“深度教学”现状的调查研究 |
4.1 圆锥曲线的教材分析 |
4.2 调查问卷的设计 |
4.3 调查研究的实施 |
五、调查的结果与分析 |
5.1 测试卷测试结果与分析 |
5.2 测试卷测试结论 |
5.3 教师访谈的结果分析 |
5.4 成因分析 |
六、“圆锥曲线的简单几何性质”的深度教学实验研究 |
6.1 深度教学流程设计 |
6.2 深度教学设计 |
6.3 “深度教学”案例研究 |
七、圆锥曲线“深度教学”实施情况的讨论分析 |
7.1 教学实践过程 |
7.2 教学实践分析 |
八、研究结论和展望 |
参考文献 |
附录 |
附录1 测试卷前测 |
附录2 测试卷后测 |
附录3 访谈记录 |
致谢 |
(4)中国中学三角函数内容设置变迁研究(1950-2019) ——以人教版教科书为例(论文提纲范文)
中文摘要 |
abstract |
第1章 绪论 |
1.1 问题提出 |
1.2 研究目的及意义 |
1.2.1 研究目的 |
1.2.2 研究意义 |
1.3 文献综述 |
1.4 研究方法与思路 |
1.4.1 研究方法 |
1.4.2 研究思路 |
1.5 创新之处 |
第2章 三角函数内容编排概述 |
2.1 三角函数发展史简述 |
2.1.1 三角函数的起源与发展 |
2.1.2 中国古代的三角学 |
2.2 中国教科书中三角函数的名词术语 |
2.2.1 八线 |
2.2.2 三角比、三角比率 |
2.2.3 圆函数 |
2.3 学习苏联——编写统一教科书(1950-1957) |
2.3.1 编排背景 |
2.3.2 三角函数内容的结构安排 |
2.3.3 特点分析 |
2.4 自力更生——独立编写通用教科书(1958-1965) |
2.4.1 编排背景 |
2.4.2 三角函数内容的结构安排 |
2.4.3 特点分析 |
2.5 拨乱反正——编写实用性教科书(1977-1985) |
2.5.1 编排背景 |
2.5.2 三角函数内容的结构安排 |
2.5.3 特点分析 |
2.6 一纲多本——编写多样化教科书(1986-1995) |
2.6.1 编排背景 |
2.6.2 三角函数内容的结构安排 |
2.6.3 特点分析 |
2.7 全面改革——编写新时代教科书(1996-2019) |
2.7.1 编排背景 |
2.7.2 三角函数内容的结构安排 |
2.7.3 特点分析 |
2.8 小结 |
第3章 三角函数定义与相关概念的内容设置之变迁 |
3.1 初中三角函数定义与相关概念内容设置变迁及特点 |
3.2 高中三角函数定义与相关概念内容设置变迁及特点 |
3.2.1 高中三角函数定义的内容设置变迁及特点 |
3.2.2 高中弧度制的内容设置变迁及特点 |
3.2.3 高中其他相关概念的内容设置变迁及特点 |
第4章 三角函数的图象与性质内容设置之变迁 |
4.1 三角函数的图象与性质内容结构设置变迁及特点 |
4.2 三角函数图象的内容设置变迁及特点 |
4.3 三角函数性质的内容设置变迁及特点 |
4.4 反三角函数的内容设置变迁及特点 |
4.5 小结 |
第5章 诱导公式内容设置之变迁 |
5.1 诱导公式内容结构设置变迁及特点 |
5.2 小结 |
第6章 三角函数式的变换内容设置之变迁 |
6.1 三角函数式的变换内容结构设置变迁及特点 |
6.2 同角三角函数的关系内容设置变迁及特点 |
6.3 两角三角函数式的变换内容设置变迁及特点 |
6.4 小结 |
第7章 三角函数应用的设置与数学史融入之变迁 |
7.1 正、余弦定理设置之变迁及特点 |
7.2 例题设置之变迁 |
7.2.1 初中例题数量编排变迁及特点 |
7.2.2 初中例题运算难度编排变迁及特点 |
7.2.3 高中例题数量编排变迁及特点 |
7.2.4 高中例题运算难度编排变迁及特点 |
7.3 习题设置之变迁 |
7.3.1 初中习题题型编排变迁及特点 |
7.3.2 初中综合型习题编排变迁及特点 |
7.3.3 高中习题题型编排变迁及特点 |
7.3.4 高中综合型习题编排变迁及特点 |
7.4 小结 |
7.5 三角函数章节中数学史融入变迁及特点 |
7.5.1 初中教科书三角函数章节中数学史融入变迁及特点 |
7.5.2 高中教科书三角函数章节中数学史融入变迁及特点 |
7.5.3 小结 |
第8章 研究结论与展望 |
8.1 研究结论 |
8.2 启示与借鉴 |
8.3 进一步的研究 |
参考文献 |
致谢 |
攻读学位期间科研成果目录 |
(5)高一学生数学运算能力发展的调查研究 ——以函数学习为例(论文提纲范文)
摘要 |
ABSTRACT |
绪论 |
(一)问题的提出 |
1.数学运算能力欠缺影响高中课程学习 |
2.函数教学中的不足对学生运算能力有较大影响 |
(二)研究意义 |
1.理论意义 |
2.实践意义 |
(三)研究目的 |
(四)研究综述 |
1.数学能力的相关研究 |
2.数学运算能力的相关研究 |
3.综合评析 |
一、数学运算能力的理论分析 |
(一)数学运算能力的概念界定 |
(二)数学运算能力的成分划分 |
(三)理论基础 |
1.波利亚解题理论 |
2.布鲁纳的认知结构理论 |
二、研究设计 |
(一)研究对象 |
(二)研究方法 |
1.文献研究法 |
2.调查法 |
(三)研究工具 |
1.测试卷的编制 |
2.问卷的编制及工具的选择 |
三、高一学生数学运算能力现状调查分析 |
(一)高一学生在数学运算能力方面的基本情况 |
1.测试卷基本情况统计分析 |
2.问卷基本情况统计分析 |
(二)高一学生在数学运算能力方面的差异性分析 |
1.不同班级学生的数学运算能力存在显着性差异 |
2.不同性别学生的数学运算能力存在显着性差异 |
3.不同班级的学生在兴趣和态度、基础知识、学习习惯方面存在显着性差异 |
4.不同性别的学生在兴趣和态度、基础知识和思想意识方面存在显着性差异 |
5.不同学校的学生在教师教学方面存在显着性差异 |
(三)小结 |
四、高一学生数学运算能力方面的问题分析 |
(一)对运算对象的理解能力仍需提升 |
(二)对基础知识的理解及应用能力有待提高 |
(三)学生选择合适运算方法的能力稍有欠缺 |
(四)学生对数学思想方法应用不到位 |
五、影响高一学生数学运算能力的因素分析 |
(一)学生的数学认知结构对数学运算的影响 |
(二)学生的内在因素对数学运算的影响 |
1.不良思维定势对数学运算的影响 |
2.非智力因素对数学运算能力的影响 |
(三)教学环境等外在因素对数学运算的影响 |
六、提升高一学生数学运算能力的对策 |
(一)完善学生认知结构,加强基础教学 |
1.重视基本知识的教学 |
2.重视算法算理的教学 |
(二)重视对数学思想方法的归纳积累 |
(三)重视对学生非智力因素的培养 |
1.培养学生对数学运算的兴趣 |
2.注重对学生思维品质的培养,关注学生心理 |
3.培养学生良好的学习习惯 |
(四)改变教师教学观念,加强教师教研交流学习 |
1.改变教师教学观念,积极学习现代教育技术 |
2.校际联合教研科研,加强教师之间的交流学习 |
结束语 |
参考文献 |
附录 |
附录 A 高一学生数学运算能力测试卷及答案 |
附录 B 高一学生数学运算能力调查问卷 |
附录 C 关于高一学生数学运算能力的访谈提纲 |
致谢 |
(6)高中生应用数学知识解决物理问题的研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 选题的缘由 |
1.2 选题的必要性 |
1.2.1 物理与数学的学科特点 |
1.2.2 高中物理考纲要求 |
1.2.3 物理与数学的相关性 |
1.3 国内外研究现状 |
1.4 研究内容与方法 |
1.4.1 研究内容 |
1.4.2 研究方法 |
1.4.3 研究的创新之处 |
第2章 数学与物理结合的理论探究 |
2.1 迁移理论 |
2.1.1 学习迁移的涵义 |
2.1.2 迁移理论的启示 |
2.2 奥苏泊尔的同化论 |
2.2.1 同化论的涵义 |
2.2.2 同化论的启示 |
第3章 高中物理课程学习所需数学知识文本调查研究 |
3.1 高中数学课程进度安排 |
3.2 高中物理课程学习所需数学知识统计 |
第4章 高中生应用数学知识解决物理问题现状调查 |
4.1 调查研究目的及方法 |
4.2 高中生应用数学知识解决物理问题的现状——学生问卷调查 |
4.3 高中生应用数学知识解决物理问题的现状——针对教师的访谈 |
4.4 结论 |
第5章 高中生应用数学知识解决物理问题专题分析及教学建议 |
5.1 函数模块 |
5.1.1 利用函数思想推导物理规律 |
5.1.2 利用函数图像基本性质解决物理图像问题 |
5.1.3 利用函数单调性、极值求解物理临界问题 |
5.1.4 教学建议 |
5.2 三角函数模块 |
5.2.1 利用三角函数极值求物理最值问题 |
5.2.2 利用三角函数图像及性质认识简谐运动规律 |
5.2.3 利用三角函数图像及性质认识机械波运动规律 |
5.2.4 利用三角函数图像及性质认识交流电的规律 |
5.2.5 教学建议 |
5.3 导数与积分模块 |
5.3.1 导数与定积分的基础知识 |
5.3.2 导数的应用 |
5.3.3 定积分的应用 |
5.3.4 教学建议 |
5.4 几何图像模块 |
5.4.1 几何图的基础知识 |
5.4.2 几何光学中的几何问题 |
5.4.3 带电粒子在磁场中的运动中的几何问题 |
5.4.4 教学建议 |
5.5 矢量模块 |
5.5.1 矢量在力、运动的合成与分解中的应用 |
5.5.2 矢量在动态平衡问题中的应用 |
5.5.3 教学建议 |
第6章 总结与展望 |
参考文献 |
附录 |
致谢 |
(7)高中数学数列问题的探究(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 研究背景 |
1.1.1 国内数列问题的研究现状 |
1.1.2 国内数列问题的教育现状 |
1.2 研究意义 |
1.3 研究问题及方法 |
1.3.1 研究问题 |
1.3.2 研究方法 |
1.4 创新点 |
1.5 理论基础 |
第二章 高考数列问题的考情分析 |
2.1 考查形式及内容分布 |
2.2 考情分析 |
2.2.1 基础知识考情分析 |
2.2.2 核心素养考情分析 |
2.2.3 数学思想考情分析 |
2.2.4 数列与数学文化考情分析 |
第三章 学生问卷调查结果分析 |
3.1 问卷编制 |
3.2 问卷统计结果分析 |
第四章 高中数列教与学的建议 |
4.1 学习建议 |
4.2 教学建议 |
结论与反思 |
参考文献 |
致谢 |
附录 |
攻读硕士学位期间已发表的论文 |
(8)民族地区高中生数学表达能力现状调查研究 ——以湖南省大湘西地区为例(论文提纲范文)
摘要 |
ABSTRACT |
第1章 选题依据 |
1.1 研究背景 |
1.1.1 课标的修订对数学表达能力提出了更高的要求 |
1.1.2 高中生数学表达现状不佳 |
1.1.3 研究对象的基本情况 |
1.2 研究的主要问题 |
1.3 研究的意义及价值 |
1.3.1 理论意义 |
1.3.2 实践价值 |
1.4 小结 |
第2章 数学表达能力的相关概述 |
2.1 文献收集的途径 |
2.2 国外数学表达研究综述 |
2.3 国内数学表达研究评述 |
2.4 核心概念界定 |
2.4.1 民族地区 |
2.4.2 大湘西地区 |
2.4.3 数学表达 |
2.4.4 数学表达能力 |
2.5 理论基础 |
2.5.1 学习金字塔理论 |
2.5.2 “三教”教育理念 |
2.6 研究框架 |
第3章 民族地区高中生数学表达能力现状调查的研究设计 |
3.1 研究方法 |
3.1.1 研究工具的选取 |
3.1.2 研究的思路 |
3.1.3 研究的方法 |
3.2 研究工具的设计 |
3.2.1 学生问卷设计 |
3.2.2 教师问卷设计 |
3.2.3 课堂观察记录表设计 |
3.2.4 文本分析设计 |
3.2.5 访谈提纲编制 |
3.2.6 试题评分标准 |
3.2.7 数据编码及分析 |
3.2.8 问卷统计流程 |
3.3 调查的基本情况 |
3.3.1 预研究基本情况 |
3.3.2 学生问卷的效度与信度 |
3.3.3 测试卷的难度与区分度 |
3.3.4 测试卷的信度与效度 |
3.3.5 正式研究基本情况 |
3.4 小结 |
第4章 数据分析与调查结果 |
4.1 学生问卷调查结果分析 |
4.1.1 数学表达意识方面 |
4.1.2 数学语言理解方面 |
4.1.3 数学语言转换方面 |
4.1.4 数学课堂交流表达方面 |
4.1.5 数学语言组织表达方面 |
4.2 学生测试卷结果分析 |
4.2.1 高中生的数学表达能力总体表现及分析 |
4.2.2 不同学校学生的数学表达能力表现及差异分析 |
4.2.3 不同性别学生的数学表达能力表现及差异分析 |
4.2.4 不同民族学生的数学表达能力表现及差异分析 |
4.2.5 不同地区学生的数学表达能力表现及差异分析 |
4.2.6 不同年级学生的数学表达能力表现及差异分析 |
4.2.7 数学表达能力与数学平时成绩之间的关系分析 |
4.3 教师问卷调查结果分析 |
4.3.1 教师资源情况分析 |
4.3.2 教师的数学教学现状 |
4.3.3 学生的数学学习情况 |
4.4 课堂观察结果分析 |
4.4.1 数学语言表达的准确性 |
4.4.2 数学语言表达的严谨性 |
4.4.3 数学语言表达的简明性 |
4.5 文本分析结果 |
4.5.1 因知识点混淆导致表达错误 |
4.5.2 因书写不规范导致表达错误 |
4.6 访谈记录与分析 |
4.6.1 学生访谈记录分析 |
4.6.2 教师访谈记录分析 |
4.7 教学建议 |
4.7.1 巧用启发性提示语,启发学生思考与交流 |
4.7.2 重视学生数学写作活动的组织、实施与评价 |
4.7.3 引导学生注重数学表达,积累数学表达经验 |
4.8 小结 |
第5章 基于数学表达能力培养的教学实验研究 |
5.1 实验设计 |
5.1.1 实验准备 |
5.1.2 教学模式 |
5.2 实验过程 |
5.2.1 注重数学表达教学 |
5.2.2 学生课后数学写作 |
5.2.3 教师激励评价写作 |
5.3 研究结果分析 |
5.3.1 学生数学学习成绩显着提升 |
5.3.2 后进生得到了较多的关注 |
5.3.3 提高了数学教学质量 |
5.4 小结 |
第6章 研究结论与反思 |
6.1 研究结论 |
6.2 研究不足 |
6.3 研究展望 |
致谢 |
参考文献 |
作者在校期间取得的学术成果 |
附录 |
附录1 :民族地区高中生数学表达能力现状调查问卷及测试卷 |
附录2 :民族地区高中教师对高中学生数学表达能力培养的调查问卷 |
附录3 :民族地区高中生数学表达能力课堂观察记录表 |
附录4 :学生访谈提纲(针对学生回答问题情况进行) |
附录5 :教师对数学表达能力认识情况的访谈提纲 |
附录6 :学生数学写作典型示例 |
(9)高中生数列学习的困难调查研究与解决策略(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
一、研究背景 |
(一)数列在数学核心素养中的体现 |
(二)数列在高考中的地位 |
二、研究内容 |
三、研究意义 |
(一)理论意义 |
(二)现实意义 |
四、研究方法 |
(一)文献研究法 |
(二)调查研究法 |
(三)访谈法 |
第二章 文献综述 |
一、国内对高中生数列学习困难的相关研究 |
(一)关于数列在高考中的考察 |
(二)关于数列解题方面的研究 |
(三)关于数列教学方面的研究 |
(四)关于数列学习困难与解决策略的相关研究 |
二、国外对高中生数列学习困难的相关研究 |
(一)关于数列的相关研究 |
(二)关于数学学习困难的相关研究 |
三、文献综述小结 |
第三章 高中生数列学习困难的理论基础 |
一、主要概念的界定 |
(一)学习困难 |
(二)高中生数列学习困难 |
二、相关理论基础 |
(一)维纳的归因理论 |
(二)基于建构主义的布鲁纳发现式学习理论 |
(三)《课标》对数列的要求 |
第四章 调查研究与数据整理分析 |
一、调查对象与调查方法 |
(一)调查对象 |
(二)调查方法 |
(三)访谈法 |
二、问卷的数据处理与分析 |
(一)基本信息分析 |
(二)信度分析 |
(三)因素分析 |
(四)影响高中生数列学习的单因素方差分析 |
三、测试卷的设计与分析 |
四、访谈内容的设计与说明 |
第五章 高中生数列学习困难的成因分析 |
一、外部因素 |
(一)学科与知识因素 |
(二)教师因素 |
(三)环境因素 |
二、内部因素 |
(一)智力因素 |
(二)非智力因素 |
第六章 针对高中生数列学习困难的解决策略 |
一、针对外部因素的解决策略 |
(一)同化数学抽象,化被动为主动 |
(二)提升教师素养,搭起学生桥梁 |
(三)净化周边环境,易于多重发展 |
二、针对内部因素的解决策略 |
(一)注入数学文化,增添数学兴趣 |
(二)磨砺数学意志,培养数学习惯 |
(三)从各阶段着手,重视基础建设 |
(四)引领变式教学,从原型中获利 |
(五)核心素养帮衬,思想砥砺前行 |
结论与不足 |
一、 结论 |
二、 不足 |
参考文献 |
附录1 数列的调查问卷 |
附录2 数列的测试卷 |
附录3 访谈提纲 |
攻读硕士学位期间发表的学术论文 |
致谢 |
(10)基于变易理论的高中函数教学设计研究(论文提纲范文)
中文摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景 |
1.2 研究问题 |
1.3 研究意义 |
1.4 研究设计 |
1.5 论文结构 |
第二章 文献综述 |
2.1 变易理论概述 |
2.2 函数教学的研究现状 |
2.3 教学与学习理论 |
第三章 高中函数概念掌握现状调查与分析 |
3.1 问卷编制与访谈设计 |
3.2 调查过程 |
3.3 信度检验与效度分析 |
3.4 调查结果 |
第四章 基于变易理论的高中函数教学内容分析 |
4.1 高中函数知识结构分析 |
4.2 高中函数的地位 |
4.3 确定学习内容 |
4.4 学情分析 |
4.5 确定关键特征 |
第五章 基于变易理论的高中函数变易空间设计 |
5.1 函数的概念 |
5.2 函数的单调性 |
5.3 方程的根与函数的零点 |
第六章 基于变易理论的高中函数教学策略建构 |
6.1 变易设疑,激发学习动机 |
6.2 回顾旧知,激活已有经验 |
6.3 样例变易,审辩关键属性 |
6.4 课堂互议,扩展学习空间 |
6.5 变式练习,强化概念本质 |
6.6 反思升华,提高学习能力 |
第七章 基于变易理论的高中函数教学实践研究 |
7.1 函数的概念教学实践 |
7.2 函数的单调性教学设计 |
7.3 方程的根与函数的零点教学设计 |
第八章 结论与展望 |
8.1 研究结论 |
8.2 研究不足与展望 |
附录1 高中函数的概念学习现状课前调查问卷 |
附录2 高中函数的概念学习现状课后调查问卷 |
附录3 教师访谈提纲 |
参考文献 |
致谢 |
个人简历 |
四、三角函数有界性的应用(高一、高二)(论文参考文献)
- [1]高中生数学抽象素养培养策略研究 ——以函数教学为例[D]. 沈艺. 南京师范大学, 2021
- [2]迁移视角下数学知识对高中物理教学的影响研究 ——以电磁学部分为例[D]. 陈方利. 石河子大学, 2021
- [3]高中数学“深度教学”案例研究 ——以“圆锥曲线的简单几何性质”教学为例[D]. 陈君. 闽南师范大学, 2021(12)
- [4]中国中学三角函数内容设置变迁研究(1950-2019) ——以人教版教科书为例[D]. 张露露. 内蒙古师范大学, 2021(08)
- [5]高一学生数学运算能力发展的调查研究 ——以函数学习为例[D]. 张伟娜. 河南大学, 2020(02)
- [6]高中生应用数学知识解决物理问题的研究[D]. 柯佼. 华中师范大学, 2020(01)
- [7]高中数学数列问题的探究[D]. 董晓明. 延安大学, 2020(12)
- [8]民族地区高中生数学表达能力现状调查研究 ——以湖南省大湘西地区为例[D]. 梁永丁. 吉首大学, 2020(02)
- [9]高中生数列学习的困难调查研究与解决策略[D]. 唐宇亮. 哈尔滨师范大学, 2020(01)
- [10]基于变易理论的高中函数教学设计研究[D]. 林翠. 福建师范大学, 2020(12)