一、数学中“悟”的教学策略探索(论文文献综述)
王思敏[1](2021)在《动态数学技术融合初中动态几何问题的教学研究》文中研究表明随着教育信息化2.0时代的到来,动态数学技术与传统教学课堂的融合逐渐深入。《国家中长期教育改革和发展规划纲要(2010-2020年)》中指出“要提高教师应用信息技术水平,更新教学观念,改进教学方法,提高教学效果。鼓励学生利用信息手段主动学习、自主学习,增强运用信息技术分析解决问题能力,倡导在课堂中运用信息技术的手段来提升课堂效果”。将信息技术用于解决学科问题、改善教学方式成为教育改革的重要题项,动态数学技术与数学教学深度融合成为研究关注热点。在“几何与代数”方面考查中,动态几何问题由于其综合性强,变式性强,方式灵活,因此教学难度较大。传统教学,因为探究环境、技术的限制,难以剖析动态几何的解题思路。动态数学技术的融入,变革了学生分析问题和解决问题的方式。但在目前的研究中,对动态数学技术融合动态几何问题的教学研究较少,多见对现状的调查研究和解题的策略研究。基于以上思考,为了改善传统课堂现状,有效培养学生的几何直观素养,本研究以波利亚解题理论、数学多元表征理论为理论基础,利用Hawgent皓骏动态数学软件,探究动态数学技术融合动态几何问题教学设计及应用策略,以期为动态数学技术融入数学课堂的教学探索提供参考以及建议。本研究从理论研究和实践研究两方面展开。在理论研究层面,首先查阅相关文献,搜集整理国内外“动态几何问题”、“动态数学技术”的相关文献,多角度综述目前的研究现状、研究成果、研究问题。其次,对波利亚解题理论、数学多元表征理念展开理论思辨,探究并提出了动态数学技术融合动态几何问题的教学策略:(1)凸显关键信息,弄清问题本质;(2)问题串链提问,启发分析问题;(3)实验探究验证,渗透数学思想;(4)展示交流解答,分享错漏创意;(5)思维导图小结,加强一题多用;(6)注重一题多变,促进迁移创新;并且,针对每一策略加以具体实例解析。最后,根据教学策略及借助Hawgent皓骏动态数学软件,进行系列的动态几何问题的教学设计研究。在实践研究层面,实验班采用动态数学技术融合动态几何问题的教学,对照班采用传统“粉笔+黑板+PPT”教学。并且,通过实验封闭测试,问卷调查以及一线教师访谈等研究方法,进行检验动态数学技术融合动态几何问题教学策略的效果如何,探讨该教学策略对学生的数学学习成绩、数学解题方式及数学情感态度是否有影响。研究结果表明:采用动态数学技术融合动态几何问题的教学能够显着提升学生的数学学习成绩,对学生的数学解题方式也产生了积极正向影响,对其数学情感态度也有积极改善作用,同时一线教师对动态数学技术融合动态几何教学也持有认可的态度。
王塑[2](2021)在《整体性教学在高中数学中的有效应用 ——以不等式为例》文中进行了进一步梳理随着时代的发展,社会对人才的要求,教师的责任已经不仅包括教授学生知识,还要引导学生提高学习能力。现在的高中部分教师只重视学生是否掌握了新知识,忽略了帮助学生进行知识衔接。学生头脑中没有知识框架导致“只知其一,不知其二”,更不可能建立知识的整体结构。本文结合整体性学习理论与实际课堂教学情况,提出了整体性教学策略,希望为今后高中数学教师有效提高学生学习能力提出一些建议。本文以学生的学习现状为研究背景,发现在实际课堂中应用整体性教学具有一定的研究意义。本文从整体性学习策略出发,提出教师实际课堂教学的六个阶段。包括知识引入、教师引导与知识联系阶段、知识纠正阶段、拓展知识阶段、作业布置阶段、目标检测阶段。首先,查阅与整体教学策略相关的理论,为教师在实际教学中运用整体性教学提供依据。其次,通过问卷调查的方式,调查学生学习能力并分析学生对于教师在课堂上实施整体性教学的态度。再次,为了保证整体性教学策略的有效性,本文还采取了实验研究的方法。针对相同的教学内容分别对实验班与普通班进行教学,之后采取数学测试的方式对两个班级同时进行考查。最后,对两个班级的学生再次进行问卷调查,从实验结果与问卷调查结果得出结论:教师在实际课堂中运用整体性教学策略可以有效提升学生从整体上理解知识,运用知识的能力。本文针对高中数学课堂运用整体性教学策略,顺应了新课程改革的要求。笔者通过查阅相关教学策略理论,结合具体的调查与实验分析,发现整体性教学策略对于提高学生学习能力具有有效性。希望本文的研究成果可以为高中数学教师选择教学策略提供一些建议。
官丽宁[3](2021)在《平面向量数量积教学的调查研究》文中认为平面向量有明确的物理背景,是近代数学中重要的基本概念之一,它是沟通代数与几何的桥梁。平面向量数量积是平面向量重要内容之一,其应用十分广泛,亦是近年高考的热点。2019年出版的普通高中数学教材在平面向量数量积内容编排上变动较大,如何开展平面向量数量积及其相关内容的教与学,如何使用新教材,是亟待解决的问题。采用了文献研究法。通过中国知网、维普网、人大复印全文数据库等方式收集与平面向量数量积相关的国内外文献。从平面向量数量积学习影响因素、解决策略、教学设计等多角度对国内外相关文献进行整理、分析与评述。通过文献研究发现:平面向量数量积教学策略研究大多停留在理论层面,缺乏实证研究。采用了问卷调查法和访谈法。(1)基于布鲁姆认知过程维度编制了《平面向量数量积测试卷》,从非认知因素(学习动机、情绪情感、态度、意志力、性格)维度编制了《学习平面向量数量积非认知因素的调查问卷》。选取四川省内江市4所中学共338名高二、高三学生为调查对象。用Excel2010对收集、整理得到的数据作了处理,通过SPSS21.0软件对数据进行描述性统计、正态分布检验、独立样本t检验、单因素方差分析、回归分析。(1)《平面向量数量积测试卷》调查结论:其一,高中生平面向量数量积学习的高阶认知水平较低,在“创造”水平最薄弱,总体得分率仅为16.22%;其二,学生对向量投影知识的记忆存在“死记硬背”情况;其三,学生性别在布鲁姆认知水平各维度及学业成绩上不存在显着差异。(2)《学习平面向量数量积非认知因素的调查问卷》调查结论:一是学生的非认知因素水平较低,均值为3.2989(满分5分),得分率为65.98%;二是学生性别在非认知因素上差异明显,男生非认知因素水平高于女生,男生“学习动机”和“性格”优于女生;三是高二、高三年级学生在非认知因素及其各维度上均不存在显着性差异;四是不同学校学生非认知因素存在差异;五是开放题解答情况表明,部分学生对平面向量数量积知识理解、应用存在困难,对数学学习有抵触情绪;六是非认知因素总体对学业成绩影响较大(解释66.7%的变异量),非认知因素5个维度对学业成绩影响最大的是情绪情感(Beta=0.384),其次是态度、意志力、性格,学习动机(Beta=0.087)几乎不影响学业成绩。(2)对4位教师进行了访谈,访谈结论:(1)新课导入方式单一,均以物理功引入新课;(2)专家型教师(职称为正高级、高级)对教学难点的把握具体,一般教师特别是新手教师对难点的确定更笼统,在难点突破上,均注重学生实际动手操作,但专家型教师更关注典型例题的应用和学生具体的学情;(3)均认为几何画板等现代数学软件有助于数学教学,由于对软件操作不熟悉,而使用频率低。提出以下教学建议:(1)研读教材,创新使用新教材;(2)重视概念课教学,采取合理教学策略;(3)重视平面向量数量积广泛应用价值;(4)适当重视学生高阶认知水平的发展,可采取创设高阶认知水平数学教学任务、发挥学生的自主性、加强教师教学反思等方法提高学生高阶认知水平;(5)注重高中生非认知因素的培养,可以从提高学习兴趣、重视成就动机的培养,合理设计问题、提高学习效能感,帮助学生端正学习态度,表扬学生坚持不懈的良好心理品质,注重学生性格的培养方面入手;(6)对学生学习的评价多元化;(7)注重现代信息技术能力的培养。基于APOS理论对新教材中平面向量数量积做了1个教学设计。
朱晨菲[4](2021)在《磨的是课,成的是人 ——数学评优课磨课活动的研究》文中认为磨课是为了课堂教学改进而进行的教师集体研究,是我国特色的教师专业发展活动。为了优秀课评比(俗称“赛课”)中参赛教师评优课的形成而展开的磨课是其中一种,它通常会在优秀课评比前系列化地进行多次。“磨的是课,成的是人”是许多一线教师经历系列评优课磨课后的共同感受。本研究以实践现象学为方法论,从过程性视角关注了该活动中“课”的改进和“人”的发展,研究问题有两个:1.在数学评优课磨课活动中,数学课怎样被改进?2.通过数学评优课磨课活动,参与教师有哪些专业发展?遵从方法论的引导,在充分论证了自身的研究条件、意向性和胜任力后,以研究者本人为工具实施了研究:首先,多来源地积累和感悟了他人(含文献)视域中的该活动。然后,兼有“局内人”和“局外人”角色,体验和洞见了两个系列的真实活动,整理并分析了采用多种研究方法获得的大量第一手资料。进而,经由反思,完成了与他人的“视域融合”,再“本质直观”出该活动中“课”如何改进、“人”有何发展的主题及其结构,并将各类资料灵活地按需融入不同主题。接着,对每个主题,采用现象学写作的方式,逐一阐释了研究结果,并对所有具体结果进行了整体梳理。对第一个研究问题:优秀课评比的规则使得参赛教师提前准备关于参赛课题的教学具备可能,而面向未知学情实施优质教学则是参赛教师执教现场评优课时的主要挑战。教师集体为了支持参赛教师有效应对挑战而展开系列化评优课磨课活动。“以发现问题为目的观察试教”是每次磨课的开端,分为“依据学生表现发现关键事件”和“在分析关键事件中提出问题”。“理解数学知识的境脉与本质”总被审慎地对待,包括“探究教材的编写逻辑与意图”、“从其他版本教材里获得启发”、“在数学知识体系中寻根究底”。“基于经验推理把握未知学情”是讨论的基础,先需“挖掘不同学情的特点与需求”,再“结合潜在难点制定教学目标”。“编排创意的课堂结构与任务”尤为重要,包括“建立简洁且深刻的课堂结构”、“设计合理创新的活动与问题”、“把握课堂容量与时间的平衡”。“设计灵活的启发时机与策略”时时发生,在“推测学生的思维方式与进程”基础上,会“预设弹性化的适时启发策略”和“规划即时性教学决策的方向”。“‘因师施磨’迭代推进问题解决”是系列磨课的发展趋势,体现为“注重教师的特质和自我建构”、“试教不同学情调适教学实施”。在系列磨课中,教师们通过一以贯之的各显所长、合作交流、协商共建、观点融合,逐渐生成多角度渐进性理解和多样化演进性建议,支持参赛教师评优课教学设计的不断完善和面向未知学情优质教学的逐步实现。对第二个研究问题:无论是短期或常年参与,经历了该活动后,参赛教师、教研员、专家教师、研究者都会产生各自的专业发展。参赛教师的发展表现在:即时判断能力达至“看得到”、即时决策能力达至“接得住”、教研理解能力达至“听得懂”、教研表达能力达至“说得出”、教研反思能力达至“想得清”、教学再设计能力达至“改得了”、研究性思维的整体优化上。教研员的发展表现在:理解教师能力的精深、教学设计能力的精进、磨课组织能力的精湛、研究性思维的持续完善上。专家教师的发展表现在:教学创新能力的改良、指导教师方法的改进、教研合作意识的改善、研究性思维的不断突破上。研究者的发展表现在作为“局内人”时数学教学观念的变革、有效备课方法的积累、卓越教学意愿的激发、教研合作意识的改良,作为“局外人”时研究方法及其实施、研究结果及其呈现、理解教育实践研究、理解教师专业发展四方面的发展,以及研究性思维的融合发展上。整体地看,以上方面的发展表现和程度都具有相对性,它们的产生均与各类教师更加善于理解他人、善于理解自己以及研究性思维的成长有关,对各类教师长期的专业发展都会形成积极影响。最后,研究者基于四个理由,提出:在现阶段,对评优课磨课活动的研究是一项“尚在起点的探索”。
陈红静[5](2021)在《农村初中生对数学基本思想理解与应用的现状及教学研究 ——以山西省运城市为例》文中指出《义务教育数学课程标准(2011年版)》中新增了对学生“基本思想”的培养要求,数学基本思想是指“数学产生与发展所必须依赖的那些思想”和“学习过数学的人应当具有的基本思维特征”,包括有抽象、推理和建模三大核心。在数学教学中渗透基本思想,可使中学生对数学和数学问题有本质性认识,使学生终身受益。近年来,国内多数从事数学教育和专业数学方面的专家都对数学基本思想的主要内涵以及在课堂教学中如何渗透基本思想进行深入研究,也发表了相关的结论。但由于农村地区的教学资源和教师本身的素质有限,教师们对新教学理念的重视和在教学中应用程度相对不够。基于此,笔者在研究文献的基础上,对数学基本思想以及其核心内容做出了概念定义;接着用问卷调查的方法,以山西省运城市临猗县的初三学生为调查对象,以函数部分内容为载体,调查农村初中学生对数学基本思想的了解和掌握程度;然后通过与农村一线教师访谈了解农村教师是否了解与重视数学基本思想在课堂中的渗透,望从教师角度找到学生对数学基本思想了解与应用程度不够理想的原因;接着根据调查与访谈结果,和对数学教育家的相关专着的研究,提出相应的渗透原则与策略;最后结合优秀的教学设计和对数学基本思想的研究提出教学案例。研究结果表明,多数中小学生渴望通过自己的学习与实践感悟一些数学基本思想,但他们对于数学基本思想的理解与认识往往是不准确的,当谈到学生用数学基本思想解决数学问题时,在较为复杂的数学题目中,他们对数学基本思想的应用掌握是不到位的。从教师角度分析,农村一线教师对数学基本思想的定义和分类认识是不够的,他们并没有对数学思想方法和数学基本思想有清晰的认知;在数学基本思想的渗透上,教师认为渗透的障碍是学生本身的素质和教学进度的要求,并没有认识到自己本身素质的影响。基于以上研究结果,本文提出相应的渗透策略,即渗透要反复,渗透程度要不断加深;数学基本思想蕴含于数学体系之中,需要教师不断去挖掘;让学生在问题的发现和解决过程中“悟”基本思想;对知识进行归纳时要对其中蕴含的基本思想进行归纳;引导学生反思,培养应用与感悟数学思想的意识;善于运用现代教育技术。本文也提出了渗透数学基本思想的原则,即顺序性原则、渗透性原则、适度适当原则、启发性原则和建构性原则。最后本文根据以上的研究结果和通过研读优秀的教学案例,提出了以函数为背景的新课教学和解题教学案例。论文旨在通过对现实情况的研究,为中学教学提供相应的建议和方法,望他们在教学中更好地渗透数学基本思想,使中学生在掌握和运用数学的过程中不但可以掌握丰富的数学知识,而且也可以了解很多数学知识产生的来龙去脉,以及数学知识与现实生活的联系,从而真正培养和提升中学生的能力与思维。
石迎春[6](2021)在《小学数学“有过程的归纳教学”模式建构》文中进行了进一步梳理当前教育教学中存在两个突出的问题,一是缺乏“过程”的教育,具有极强的“结果导向”;二是对“归纳教学”重视不够,忽视从个别到一般的归纳学习。小学数学学科,学习内容具有“先验性、抽象性”,儿童掌握这种先于经验、脱离具体情境、经过多次抽象之后的知识存在一定的难度,儿童学习的心理机制要求儿童在数学的学习过程中应浓缩再现人类数学发展的过程,要经历动手操作、实践探索,要亲历知识的再创造、再发现的过程。“有过程的归纳教学”作为一种教学理念和方式,旨在回应上述的诉求,变革儿童的学习方式、促进儿童知识的理解与智慧的生成。“有过程的归纳教学”已对当前教育教学改革产生了重大的影响,而如何更好地在教学中进行实践成为了教育界关注的重点问题。本研究立足实际,以小学数学学科为例,以归纳性教学理论的生成路径为指引,从“宏观的理论阐释——中观的模式建构——微观的教学实践”三个层面对“有过程的归纳教学”做纵深的探查与研究。以“设计本位”研究为研究范式,构建小学数学“有过程的归纳教学”的教学模式,探寻教学的设计与实施策略。本研究围绕三个研究问题:1.什么是“有过程的归纳教学”?2.小学数学“有过程的归纳教学”的模式原型是什么?3.如何修订和完善小学数学“有过程的归纳教学”的模式原型?具体展开了三个方面的工作。首先,本研究从理论和现实两个维度,对“有过程的归纳教学”的立论基础进行分析,并基于对国内外关于“过程及过程教学”“归纳及归纳教学”文献的分析,在结合专家访谈的基础上对“有过程的归纳教学”的内涵、典型特征及其条件系统进行了阐述。之后以设计本位研究为研究范式,通过三轮的教学迭代对“有过程的归纳教学”的理论进行了回应,并对典型特征及其实现条件进行了完善。其次,本研究以“有过程的归纳教学”的理论为指引,利用视频图像分析法对小学数学10节典型的“关注过程、注重归纳”的教学课例的典型特征进行了分析,并得到了“注重过程的归纳式教学”课堂样态是怎样的,之后确定了“有过程的归纳教学”模式原型建构的五个核心要素:“类特征”的学习主题、“挑战性”的问题情境、“探究性”的操作活动、“贯穿性”的归纳建构、“嵌入式”的学习评价,并以上述研究为基础初步构建了小学数学“有过程的归纳教学”的教学模式(Mode of Procedural Inductive Teaching,以下简称“P-I”教学模式)原型,并从指导思想、功能目标、操作流程和实现条件四个方面对该教学模式进行了详细的阐述。初步构建的“P-I”教学模式具体的操作流程主要有:确立学习目标——设置问题情境——探索新知、建构意义——归纳新知——应用巩固这五个环节。最后,将“P-I”教学模式的原型与小学数学学科的典型案例结合进行具象化,展开了三轮的教学迭代。一方面是将教学理念转化成了实践,另一方面是对教学模式进行检验和修正,同时也对“有过程的归纳教学”的意义、价值、内涵等进行回应。第一轮教学研究是尝试和探索阶段,按照之前构建的教学模式进行教学设计和实施,主要是从宏观的角度对有过程的归纳教学的各个要素进行整体的考察。通过第一轮的教学实践,本研究对“P-I”教学模式原型的操作流程进行了优化,并结合具体的教学内容设计了“P-I”教学模式的变式。第二轮是调整和改进的阶段,在第一轮的行动研究的基础上,对“P-I”教学模式进行中观的调整。进一步将教学模式的原型及其变式的操作流程进行优化,并增加了“P-I”教学模式的师生行为指南。第三轮是提升和应用的阶段,主要是从微观的角度,对教学模式的细节进行打造,最终将教学模式的操作流程优化为:“确立学习目标”、“创设问题情境”、“探索新知、建构意义”、“回顾反思”、“应用巩固,拓展延伸”五个环节,并将学生的学习评价嵌入到整个模式之中。至此,经过三轮的教学迭代,本研究构建了与“有过程的归纳教学”相互匹配的适合小学数学教学的“P-I”教学模式原型、变式及其师生行为指南。本研究最终构建了小学数学“有过程的归纳教学”的教学模式(“P-I”教学模式)。该教学模式的创新性主要体现在:1.立足我国当前教育教学存在的问题,以设计本位研究为研究范式,尝试给出来自实践的探索;2.“P-I”教学模式很好地将“过程教育”与“归纳教学”思想结合起来;3.将“P-I”教学模式做变式的处理,以此来增加模式的灵活性;4.将学生的学习评价嵌入到整个模式之中。另外,本研究在教学实践研究中,对“有过程的归纳教学”的设计与实施策略进行了提炼。“有过程的归纳教学”的设计策略主要有:“聚焦‘核心内容’,确定类特征学习主题”“整体分析学习内容、把握知识本质”“剖析学生前概念、定位学习起点”“形成以‘单元’为单位的教学设计”。“有过程的归纳教学”的实施策略主要有:“创建课堂学习共同体,实现多种形式的对话”“经历多种思维的沉思,实现新知的归纳”“对归纳的结论进行辨思,处理好‘或然与必然’的关系”“介入真实情境和任务,实行多元性教育评价”。
沈中宇[7](2021)在《面向教师教育的数学知识研究 ——以S市高中数学教研员为例》文中研究指明百年大计,教育为本。教育大计,教师为本。教师培养的关键是教师教育,要改善教师教育的效果,教师教育者的作用无疑是至关重要的,因此,数学教师教育者在数学教师教育中发挥着重要的作用。近年来,数学教育研究者开始关注数学教师教育者的研究,其中,“面向教师教育的数学知识”(Mathematical Knowledge for Teaching Teachers,简称MKTT)理论为研究一般数学教师教育者所需要的数学知识提供了借鉴。但已有的研究中对于“面向教师教育的数学知识”仍然缺乏清晰准确的刻画,同时,相关研究主要集中在理论构建,相关的实证研究较少。基于以上原因,本文以面向教师教育的数学知识为研究主题,选取高中数学教研员作为研究对象,主要探讨以下三个研究问题:(1)构成面向教师教育的数学知识的要素有哪些?(2)高中数学教研员具备哪些面向教师教育的数学知识?(3)在数学教研活动中,高中数学教研员反映出哪些面向教师教育的数学知识?针对本研究的三个研究问题,将研究设计分为三个阶段,分别为文献分析与框架确立、问卷调查与深度访谈以及现场观察与案例分析。文献分析与框架确立阶段采用了专家论证法。首先通过文献分析梳理已有的数学教师教育者专业知识框架,接着通过对相关的成分和子类别的反复比较,构建初始的面向教师教育的数学知识框架,最后通过三轮专家论证得到最终的面向教师教育的数学知识框架。问卷调查与深度访谈阶段采用了问卷调查法和深度访谈法。其中选取了高中数学中重要的数学主题编制了调查问卷和访谈提纲,通过编码分析高中数学教研员的问卷回答和访谈实录,从而了解高中数学教研员具备的面向教师教育的数学知识。现场观察与案例分析采用了案例研究法。其中观察了不同的高中数学教研员的多次教研活动,在观察过程中对教研活动进行录音并在观测后对高中数学教研员进行访谈,对录音和访谈材料进行编码和统计,从而剖析高中数学教研员在教研活动中反映的面向教师教育的数学知识。本研究的基本结论是:1.构成面向教师教育的数学知识的要素包括4个成分与12个子类别。构成成分为学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识。学科内容知识包含的子类别为一般内容知识、专门内容知识和关联内容知识,教学内容知识包含的子类别为内容与学生知识、内容与教学知识和内容与课程知识,高观点下的数学知识包含的子类别为学科高等知识、学科结构知识和学科应用知识,数学哲学知识包含的子类别为本体论知识、认识论知识和方法论知识。2.高中数学教研员具备的面向教师教育的数学知识情况如下。(1)高中数学教研员在学科内容知识、教学内容知识、高观点下的数学知识和数学哲学知识4个成分中并不存在明显的短板;(2)高中数学教研员对不同知识成分的掌握存在一定差异,其中,在学科内容知识和教学内容知识2个方面掌握较好,而在高观点下的数学知识和数学哲学知识2个方面还有所欠缺;(3)高中数学教研员在各个知识成分中有以下具体理解:在学科内容知识方面,对于基本的概念、定理和公式的合理性以及不同概念、定理和公式之间的联系较为熟悉;在教学内容知识方面,对于学生有关特定数学内容学习的困难,不同数学内容的教授方式和相关数学内容在教科书中的编排理解较深;在高观点下的数学知识方面,能够对中学数学知识作出一定程度的推广、涉猎不同学科中数学知识的应用;在数学哲学知识方面,能够大致解释数学定义的基本作用和标准、数学研究的动力、数学证明的作用和价值以及数学的基本思想方法。(4)高中数学教研员在各个知识成分中有以下欠缺之处:在学科内容知识方面,对于定义的多元性、解释的多样性和联系的普遍性方面还有进步的空间;在教学内容知识方面,对于学生数学学习困难的细致理解、不同数学内容的深入教授和教学内容编排意图的全面考虑还有提升的余地;在高观点下的数学知识方面,从高观点理解中学数学知识、分析不同知识的联系和在不同学科中应用数学知识方面还有较多需要完善的地方;在数学哲学知识方面,还不能形成系统的理解。3.在数学教研活动中,高中数学教研员反映出的面向教师教育的数学知识情况如下。(1)高中数学教研员反映的面向教师教育的数学知识大部分属于教学内容知识和学科内容知识,小部分属于数学哲学知识和高观点下的数学知识。(2)高中数学教研员在数学教研活动中的主要知识来源为一般内容知识、内容与教学知识、学科高等知识和方法论知识。(3)高中数学教研员在数学教研活动中反映的面向教师教育的数学知识主要有:在学科内容知识方面有数学中的基本概念、定理、公式和性质及其由来、表征、证明及解释;不同数学概念、定理、公式之间的联系。在教学内容知识方面有学生对特定数学内容理解存在的困难;不同数学内容的引入、辨析、应用和小结的教学方法;特定数学内容在课程标准中的要求和在教科书中的编排。在高观点下的数学知识方面有中学数学课程中的数学概念在高等数学中的推广;高观点下不同数学概念之间的联系;数学知识在现代科学和实际生活中的应用。在数学哲学知识方面有对数学定义的认识;对数学认识过程的理解;推理论证在数学中的作用;数学研究的思想方法。本研究对于教师教育者专业标准的制订、数学教师教育者专业培训的设计和数学教师专业发展项目的规划有一定启示,后续可以在数学教师教育者的专业知识、数学教师教育者的专业发展和数学教师教育者的工作实践等方面进一步开展研究。
洪艺萍[8](2020)在《基于数学文化培养小学生数学核心素养的教学策略研究》文中认为近年来,“数学核心素养”和“数学文化”成为数学教育界密切关注的热点问题。数学核心素养是新时代接班人的关键能力和必备品格,对学生的终身发展有着举足轻重的作用。培养学生数学核心素养要求教师要将数学当成文化去传播而不是知识去传授,即我们日常教学应从教学生数学知识转变到数学文化教学。然而,大部分教师难以在日常教学中践行数学文化教学,主要原因在于他们对数学文化和数学核心素养理解不透彻、难以把握数学文化教学内容、对数学文化拓展素材西师版《数学文化读本》的使用存在一定困惑等。因此,笔者基于以上问题,通过查阅相关文献分析国内外数学文化教学、小学数学核心素养的研究现状,对数学文化、数学文化教学、小学生数学核心素养进行相关概念界定和相关研究综述。随后笔者结合小学生身心发展特点,总结了数学文化教学培养小学生数学核心素养的依据,提出了数学文化培养小学生数学核心素养的教学原则和教学策略,最后根据这个原则和策略给出了具体的数学文化教学设计,旨在培养小学生数学核心素养,促进小学生全面发展。本文笔者通过文献法、案例分析法和课堂观察法等三种方法主要研究三个问题:1)数学文化教学培养小学生数学核心素养的依据;2)探究基于数学文化教学培养小学生数学核心素养的教学原则和教学策略;3)在以上研究的基础上,选择《涂色的正方体》《田忌赛马的对策》《神奇的“数独”》进行数学文化教学设计。并得到了如下结论:1.数学文化教学和学生数学核心素养的培育有着紧密的联系,数学文化蕴藏着数学核心素养,数学核心素养是数学文化的提炼。数学文化教学的科学价值使人慎思严谨,引导学生掌握必备的知识与技能;应用价值使人博学多才,美学价值使人敏捷灵动,帮助学生养成从数学的角度提出问题、思考问题和解决问题的数学思维与习惯;人文价值使人睿智深刻,引导学生在数学学习中形成积极良好的数学学习情感与态度。2.基于数学文化培养学生核心素养的教学策略应基于以下教学原则:1)内引外联,体用结合,引导学生掌握必备的数学知识与技能;2)承前启后,显隐结合,引导学生形成良好的数学思维与习惯;3)深入浅出,师生结合,引导学生培养积极的数学情感与态度。随后,笔者基于教学原则,提出基于数学文化培养学生数学核心素养的教学策略:1)以数学故事为载体,巧设问题情境;2)以数学活动为抓手,注重探究交流;3)以数学思想为内涵,善用数学评价;4)以感悟内涵为重点,关注反思总结。3.笔者先对数学文化教学内容进行了分析。由于读者一直执教高年段,因此在论述时主要以五、六年级为例。笔者选择了《数学文化读本》中适合高年级学生的69个数学故事,并将它们按照在数学教学中的作用分为教学主要内容、教学补充内容和数学实践内容。随后,笔者结合教学原则和策略,在教学主要内容中选择了《涂色的正方体》、在教学补充内容中选择了《田忌赛马的对策》,在数学游戏中选择了《神奇的“数独”》进行数学文化教学设计。当然,这种教学策略也有一定局限性,学生的层次性、教师的专业能力和教学设计的质量都会对数学文化教学的实施和育人效果造成影响。因此笔者将力求提升自己的研究水平和教学经验,继续围绕这个策略进行进一步的思考,争取更进一步地提出更具体、更科学、更全面的教学策略,争取撰写出更生动、更深刻的教学设计,为后续教师研究该问题提供一点方向与思考。
刘伟[9](2020)在《初中生数学建模能力培养研究》文中认为新课程改革以来,随着数学建模进入数学课程标准和初中数学教材,数学建模能力成为初中生必须掌握的关键能力,数学建模能力培养成为数学教育的重要目标和改革方向。然而,调查研究表明,当前初中生数学建模能力培养存在着一些亟待改进的问题,数学建模“教什么”“怎么教”“如何培养初中生数学建模能力”仍然困扰着一线教师。究其原因,归根结底是因为当前初中数学建模教学缺乏行之有效的理论指导,也缺乏可供参考的教学策略,初中生的数学建模学习也缺少行之有效的学习方法。因此,创建一种具有通用性和统摄性的数学建模能力培养理论,提出具体可行的初中生数学建模能力培养策略,帮助和指导一线教师有效地进行初中数学建模教学成为当务之急。基于此认识,本研究以初中生数学建模能力培养研究为切入点,希望通过全面系统地分析初中数学建模教学内容,探查初中数学建模教学内容的局限性;又希望通过详细的课堂考察和教师深度访谈,全面调查初中生数学建模的过程,总结初中生数学建模的方式及规律,以期研究并得到初中生数学建模的一般过程及初中生数学建模能力结构;然后在调查研究的基础上,通过对初中生数学建模能力培养现状进行详细分析和梳理,分析和研判初中生数学建模能力培养中的困境,透视和了解初中生数学建模学习的障碍;最后,为了有针对性地探查和寻找初中生数学建模能力培养策略,本研究从提升初中生数学建模能力和为初中生数学建模学习提供系统性支持的视角,提出了初中数学建模教学内容选择策略、初中生数学建模能力培养的教学策略和初中生数学建模学习策略。由此可见,初中生数学建模能力培养研究,通过探究初中生数学建模能力培养的规律,解答了初中生数学建模能力培养究竟“教什么”“怎么教”和“怎么学”的问题,构建了初中生数学建模能力培养的教学理论雏形,可以有效改善初中数学建模教学,为培养初中生数学建模能力提供一种新的可供选择的教学模式,此项研究不仅具有较强的理论意义,而且具有较高的实践价值。本文共分为六大部分,各部分的理路分别是:第一部分是导论,简要介绍本文研究的缘起与意义、核心概念、研究思路、研究方法,并对已有的研究文献做了研究综述;第二部分梳理了数学建模教育的背景、发展历程及理论基础,为制定初中生数学建模能力培养的策略奠定理论基础;第三部分重点对初中数学建模教学内容做了文本分析,讨论了初中数学教材与课程标准的一致性,初步分析了教材中数学建模内容的不足;第四部分通过课堂考察和教师深度访谈,详细调查了初中生数学建模的过程,构建了初中生数学建模能力结构,透视了初中生数学建模能力培养的现状;第五部分分析了初中数学建模教学内容存在的局限性、初中数学建模教学的困境以及初中生数学建模学习的障碍,意在为探寻初中生数学建模能力培养的策略奠定基础;第六部分主要探讨怎样培养初中生的数学建模能力,从数学建模教学内容选择、初中数学建模教学和初中生数学建模学习三个方面提出了初中生数学建模能力培养的策略。
张瑞利[10](2020)在《小学生数学符号语言发展阶段及教学策略研究》文中进行了进一步梳理数学符号语言是数学学习与教学的基本语言。对数学符号的研究自古以来都是数学研究的重要部分。随着社会发展进步,数学符号在数学学习和应用上发挥重要作用。数学符号语言的学习作为数学学习的桥梁,在理解、阅读、转换、解题、表达方面存在普遍问题。小学生在学习数学符号语言方面是否存在阶段特征,以及在学习数学符号语言的过程中主要存在什么障碍;如何把握学生数学符号语言发展水平,正确掌握学生数学符号语言发展状况,并落实到教学实践中,既是义务教育阶段学生和教师应该关注的问题,也是学术理论与教学实践有机结合的重要内容。基于文献研究及教学实践调查,并结合心理学、教育学、符号学、学科理论四个维度对数学符号语言进行研究解释,根据具体教学实际中数学符号语言学习与教学的调查,通过教师和学生访谈、课堂记录方式总结归纳数学符号语言阶段特征及教学策略。本研究前期通过文献研究建立理论基础,中期实践调查初步构建数学符号语言理论体系,并结合教学实际调查综合教材、课标、学生三个角度力图从数学课程本身涵盖的“数与代数”部分知识脉络,以学生和教师教学实践中数学符号语言现状及学习结果出发,划分出小学生数学符号语言的发展阶段,明确数学符号语言的阶段内涵和特征,并提出阶段性教学建议。本研究首先采用文献法对数学符号语言相关文献进行质性和量化分析,根据分析结果得出研究价值和意义。其次,分析总结数学符号语言的理论基础,初步构建数学符号语言理论基础。再次,通过后期数学符号语言的实际调研,结合教材、课标、学情对一到六年级数学符号语言进行阶段划分,主要采用调查法、文本分析法、访谈法对数学符号语言的调查结果归纳整理,具体分析每一阶段发展特征,明确各个阶段要素侧重点,并提出相应的教学策略。最后得出本研究的主要结论—小学生数学符号语言发展可以划分为三个阶段,阶段一:直观感知阶段(一、二年级),阶段二:具体运算阶段(三、四年级),阶段三:形式运算阶段(五、六年级);并结合各个阶段数学符号语言特征提出阶段性的教学建议;最后一章总结数学符号语言阶段间关系、以及数学符号语言与其它核心素养的关系,并提出本研究的反思与展望。
二、数学中“悟”的教学策略探索(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、数学中“悟”的教学策略探索(论文提纲范文)
(1)动态数学技术融合初中动态几何问题的教学研究(论文提纲范文)
中文摘要 |
Abstract |
第一章 前言 |
一、研究背景和问题 |
二、研究目的与意义 |
三、研究框架与思路 |
四、研究方法与内容 |
第二章 相关研究概述 |
一、相关概念界定 |
(一)动态数学技术 |
(二)初中动态几何问题 |
二、初中动态几何问题的相关研究概述 |
三、动态数学技术相关研究概述 |
四、小结与思考 |
第三章 动态数学技术融合初中动态几何问题的教学策略及应用案例 |
一、基本理论概述 |
(一)波利亚解题理论 |
(二)数学多元表征学习理念 |
二、Hawgent皓骏动态数学软件的基本功能 |
三、动态几何问题典型积件设计案例 |
四、动态数学技术融合初中动态几何问题教学的教学策略及应用案例 |
(一)凸显关键信息,弄清问题本质 |
(二)问题串链提问,启发分析问题 |
(三)实验探究验证,渗透数学思想 |
(四)展示交流解答,分享错漏创意 |
(五)思维导图小结,加强一题多用 |
(六)注重一题多变,促进迁移创新 |
第四章 动态数学技术融合初中动态几何问题教学实验研究 |
一、实验方案设计 |
(一)实验目的 |
(二)实验假设 |
(三)实验对象 |
(四)实验变量 |
(五)实验方式 |
(六)实验材料 |
二、实验结果与数据分析 |
(一)前测成绩结果与分析 |
(二)后测成绩的结果与分析 |
(三)学生问卷调查结果分析 |
(四)教师访谈结果分析 |
第五章 动态数学技术融合动态几何问题教学的课例研究 |
一、课例一《动态几何问题之等腰三角形》 |
(一)教学设计 |
(二)教学过程对比分析 |
(三)教学实录对比及评析 |
二、课例二《动态几何问题之直线型轨迹问题》 |
(一)教学设计 |
(二)教学过程对比分析 |
(三)教学实录对比及评析 |
三、教学评析 |
(一)自我反思 |
(二)专家点评 |
第六章 研究结论与反思 |
一、研究结论 |
二、研究反思 |
三、研究展望 |
参考文献 |
附录 |
附录1 动态几何问题之等腰三角形后测卷 |
附录2 动态几何问题的实验教学调查问卷 |
附录3 访谈提纲 |
硕士学习期间发表论文及研究成果 |
致谢 |
(2)整体性教学在高中数学中的有效应用 ——以不等式为例(论文提纲范文)
摘要 |
Abstract |
一、绪论 |
(一)研究意义 |
(二)研究背景 |
1.时代发展的需要 |
2.社会对人才的要求 |
3.高考的发展趋势 |
4.学生的学习现状 |
5.不等式的重要地位及学科要求 |
(三)研究问题 |
(四)研究设计 |
1.研究内容 |
2.研究目标 |
3.研究方法 |
4.研究思路 |
二、整体性教学的概念界定和理论基础 |
(一)整体性教学的概念界定 |
1.整体性学习策略 |
2.整体性数学思维 |
3.整体性教学策略 |
(二)整体性教学理论基础 |
1.建构主义理论 |
2.认知弹性理论 |
3.认知负荷理论 |
三、文献综述 |
(一)国外现状综述 |
(二)国内现状综述 |
四、整体性教学策略的应用 |
(一)整体性教学策略应用流程 |
1.知识引入 |
2.教师引导、知识联系阶段 |
3.知识纠正阶段 |
4.拓展知识阶段 |
5.作业布置阶段 |
6.目标检测阶段 |
(二)整体性教学方法、优势与误区 |
1.整体性教学方法 |
2.整体性教学优势 |
3.整体性教学误区 |
(三)整体性与普通教学策略的区别 |
五、整体性教学策略的案例 |
(一)《一元二次不等式的解法》教学设计 |
1.课题:《一元二次不等式的解法》 |
(二)《均值不等式》教学设计 |
1.课题:《均值不等式及其应用(第一课时)》 |
(三)教学过程中的问题与解决方法 |
1.教师问题 |
2.学生问题 |
3.解决的方法 |
六、调查研究 |
(一)调查目的 |
(二)调查背景 |
(三)调查方式 |
(四)调查问卷的设计与数据分析 |
1.问卷的设计与结构 |
2.调查问卷的信度 |
3.调查问卷的效度 |
4.调查问卷的数据统计 |
5.调查结果及归因分析 |
七、高中数学整体性教学的实验研究 |
(一)实验目的和设计 |
1.实验目的 |
2.实验设计 |
(二)实验过程 |
1.实验流程图 |
2.实验假设 |
3.实验变量 |
4.实验实施 |
(三)实验结果 |
1.实验前测数学成绩 |
2.实验后测成绩 |
(四)实验小结 |
(五)调查问卷 |
1.调查目的 |
2.调查背景 |
3.调查方式 |
4.调查问卷的设计与数据分析 |
5.调查结果及归因分析 |
八、反思与建议 |
(一)结论 |
(二)本研究的不足 |
(三)进一步研究方向 |
参考文献 |
附录一:调查问卷(一) |
附录二:调查问卷(二) |
附录三:实验前测习题 |
附录四:实验后测试题 |
致谢 |
(3)平面向量数量积教学的调查研究(论文提纲范文)
中文摘要 |
Abstract |
第1章 绪论 |
一、研究背景 |
(一)时代背景 |
(二)现实诉求 |
1.平面向量数量积在高考中的体现 |
2.平面向量数量积内容编排变化 |
二、研究问题与意义 |
(一)研究问题 |
(二)研究意义 |
三、研究目的与方法 |
(一)研究目的 |
(二)研究方法 |
四、研究内容 |
第2章 文献综述 |
一、平面向量数量积学习的影响因素 |
(一)认知因素对平面向量数量积学习的影响 |
(二)非认知因素对平面向量数量积学习的影响 |
二、平面向量数量积教学策略综述 |
(一)克服负迁移 |
(二)降低认知加工的难度 |
(三)精心设计教学过程 |
(四)激活非认知因素 |
三、平面向量数量积教学设计研究综述 |
(一)平面向量数量积新知课教学设计研究 |
(二)平面向量数量积复习课教学设计研究 |
四、国外研究现状 |
五、相关理论 |
(一)布鲁姆教育目标分类理论 |
(二)非认知因素 |
(三)APOS理论 |
(四)数学核心素养理论 |
六、综述小结 |
(一)综述结论 |
(二)综述引发的思考 |
第3章 问卷与访谈提纲设计 |
一、调查目的 |
二、调查对象 |
(一)问卷调查对象 |
(二)访谈调查对象 |
三、调查工具 |
(一)问卷调查的编制与实施 |
1.平面向量数量积测试卷的编制与实施 |
2.平面向量数量积非认知因素问卷的编制与实施 |
(二)教师访谈提纲编制与实施 |
四、数据的编码 |
第4章 平面向量数量积调查结果与分析 |
一、平面向量数量积问卷调查结果分析 |
(一)平面向量数量积测试卷调查结果分析 |
1.测试卷基本描述性统计 |
2.高中生平面向量数量积数量积测试结果分析 |
3.高中生平面向量数量积测试结果差异分析 |
(二)平面向量数量积非认知因素调查结果分析 |
1.问卷基本描述性统计 |
2.学习平面向量数量积的非认知因素现状分析 |
3.平面向量数量积非认知因素的差异分析 |
4.问卷中开放题学生回答结果分析 |
5.非认知因素与学业成绩回归分析 |
二、访谈结果分析 |
(一)平面向量数量积新课导入分析 |
(二)平面向量数量积教学难点分析 |
(三)几何画板使用情况分析 |
第5章 平面向量数量积研究结论、教学建议与教学设计 |
一、研究结论 |
(一)平面向量数量积测试调查结论 |
(二)平面向量数量积非认知因素调查结论 |
(三)教师访谈结论 |
二、教学建议 |
(一)研读教材,创新使用新教材 |
(二)重视概念教学,采取合理教学策略 |
(三)重视平面向量数量积广泛应用价值 |
(四)适当重视学生高认知水平的发展 |
(五)注重学生非认知因素的培养 |
(六)对学生学习的评价多元化 |
(七)注重现代信息技术能力的培养 |
三、基于APOS理论的平面向量数量积教学设计 |
第6章 不足与展望 |
一、不足 |
二、展望 |
参考文献 |
附件 |
附件1 平面向量数量积测试卷(预测) |
附件2 平面向量数量积测试卷(正式) |
附件3 学习平面向量数量积非认知因素的调查问卷 |
附件4 非认知因素各维度介绍 |
附件5 教师访谈提纲 |
致谢 |
(4)磨的是课,成的是人 ——数学评优课磨课活动的研究(论文提纲范文)
摘要 |
Abstract |
第1章 绪论 |
1.1 缘起 |
1.1.1 几个机缘 |
1.1.2 初步推断 |
1.2 研究问题 |
1.2.1 研究问题的孕育 |
1.2.2 研究问题的确立 |
1.3 概念界定 |
1.3.1 数学评优课 |
1.3.2 数学评优课磨课活动 |
1.4 研究背景 |
1.4.1 通过优秀课评比推动教师发展:中国特色待阐扬 |
1.4.2 建设高质量基础教育教师队伍:教育发展新征程 |
1.4.3 数学教师专业发展的实践导向:相关研究正蓬勃 |
1.5 研究意义 |
1.5.1 增益中国数学教育教研的特色 |
1.5.2 丰富数学教师专业发展的研究 |
1.5.3 引导数学教师备好课、上好课 |
1.5.4 支持教研员有效组织教研指导 |
第2章 文献述评 |
2.1 文献主题的设计与组织 |
2.2 关于数学评优课磨课活动 |
2.2.1 优质数学课堂特征维度 |
2.2.2 已有研究的内容与方法 |
2.3 关于数学教师专业发展 |
2.3.1 数学教师的专业素养 |
2.3.2 数学教师的专业学习 |
2.4 关于数学课例研究 |
2.4.1 数学课例研究的过程与特点 |
2.4.2 数学课例研究对教师专业发展的影响 |
第3章 研究设计 |
3.1 方法论:实践现象学 |
3.1.1 本研究的基本定位和范式取向 |
3.1.2 研究者的人际关系和自身特点 |
3.1.3 方法论的规划选取和基本含义 |
3.1.4 来自实践现象学的多层次启发 |
3.2 研究思路与过程 |
3.2.1 积累与感悟已有认识 |
3.2.2 体验与洞见真实活动 |
3.2.3 反思与直观活动本质 |
3.3 研究方法与对象 |
3.3.1 观察法 |
3.3.2 访谈法 |
3.3.3 出声思维 |
3.3.4 自我反思 |
3.4 资料整理与分析 |
3.4.1 资料的汇总与归类 |
3.4.2 资料的理解与反思 |
3.4.3 资料的提炼与呈现 |
3.5 研究效度与伦理 |
3.5.1 研究的效度 |
3.5.2 研究的伦理 |
3.6 论文结构与写法 |
3.6.1 论文的结构 |
3.6.2 论文的写法 |
第4章 数学评优课磨课活动中“课”的改进 |
4.1 以发现问题为目的观察试教 |
4.1.1 依据学生表现发现关键事件 |
4.1.2 在分析关键事件中提出问题 |
4.1.3 小结:“烤” |
4.2 理解数学知识的境脉与本质 |
4.2.1 探究教材的编写逻辑与意图 |
4.2.2 从其他版本教材里获得启发 |
4.2.3 在数学知识体系中寻根究底 |
4.2.4 小结:“吃橘子” |
4.3 基于经验推理把握未知学情 |
4.3.1 挖掘不同学情的特点与需求 |
4.3.2 结合潜在难点制定教学目标 |
4.3.3 小结:“境与径” |
4.4 编排创意的课堂结构与任务 |
4.4.1 建立简洁且深刻的课堂结构 |
4.4.2 设计合理创新的活动与问题 |
4.4.3 把握课堂容量与时间的平衡 |
4.4.4 小结:“神来之笔” |
4.5 设计灵活的启发时机与策略 |
4.5.1 推测学生的思维方式与进程 |
4.5.2 预设弹性化的适时启发策略 |
4.5.3 规划即时性教学决策的方向 |
4.5.4 小结:“出彩” |
4.6 “因师施磨”迭代推进问题解决 |
4.6.1 注重教师的特质和自我建构 |
4.6.2 试教不同学情调适教学实施 |
4.6.3 小结:“陪伴” |
4.7 本章总结 |
第5章 数学评优课磨课活动中“人”的发展 |
5.1 参赛教师的主要发展 |
5.1.1 课堂教学中的能力发展 |
5.1.2 磨课活动中的能力发展 |
5.1.3 磨后反思中的能力发展 |
5.1.4 研究性思维的整体优化 |
5.1.5 小结:“名师之智” |
5.2 教研员的主要发展 |
5.2.1 理解教师能力的精深 |
5.2.2 教学设计能力的精进 |
5.2.3 磨课组织能力的精湛 |
5.2.4 研究性思维的持续完善 |
5.2.5 小结:“教研之慧” |
5.3 专家教师的主要发展 |
5.3.1 教学创新能力的改良 |
5.3.2 指导教师方法的改进 |
5.3.3 教研合作意识的改善 |
5.3.4 研究性思维的不断突破 |
5.3.5 小结:“专家之谋” |
5.4 研究者的主要发展 |
5.4.1 作为“局内人”的诸多发展 |
5.4.2 作为“局外人”的诸多发展 |
5.4.3 研究性思维的融合发展 |
5.4.4 小结:“科研之思” |
5.5 本章总结 |
第6章 结论与启示 |
6.1 结论 |
6.1.1 关于数学评优课磨课活动中“课”的改进 |
6.1.2 关于数学评优课磨课活动中“人”的发展 |
6.2 启示:“尚在起点的探索” |
参考文献 |
中文文献 |
英文文献 |
附录1 《二次函数的图像和性质(整体建构)》现场评优课教学设计 |
附录2 《中心对称与中心对称图形(第一课时)》现场评优课教学设计 |
作者简历及在学期间所取得的科研成果 |
致谢:行的是路,知的是情 |
(5)农村初中生对数学基本思想理解与应用的现状及教学研究 ——以山西省运城市为例(论文提纲范文)
摘要 |
ABSTRACT |
第一章 绪论 |
第一节 选题背景 |
一、教育风气的影响 |
二、数学课程标准及考试大纲的要求 |
三、学生继续发展的要求 |
第二节 研究问题与意义 |
一、研究问题 |
二、研究意义 |
三、研究方法 |
第二章 研究综述 |
第一节 数学基本思想的概念界定 |
一、数学思想 |
二、数学基本思想 |
(一) 抽象 |
(二) 推理 |
(三) 建模 |
第二节 国内外相关研究 |
一、国外相关研究现状 |
二、国内相关研究现状 |
第三节 初中数学函数部分的数学基本思想分析 |
一、函数基本内容分析 |
二、北师大版数学教材中函数内容体现的数学基本思想分析 |
第四节 对已有研究的评述 |
第三章 现状调查的结果分析 |
第一节 对学生的问卷调查结果分析 |
第二节 对教师的访谈结果分析 |
一、对教师的访谈记录 |
(一) 案例一:第一位是本科毕业,教龄6年的老师 |
(二) 案例二:第二位是本科毕业,教龄21年的老师 |
(三) 案例三:这位老师是专科学历,教龄10年的老师 |
二、访谈结果分析 |
第四章 基于问卷调查和访谈结果的渗透策略与原则分析 |
第一节 基于访谈结果的渗透策略分析 |
一、数学知识技能中蕴含数学思想 |
二、在问题解决的过程中“悟”数学思想 |
三、对知识进行归纳总结的同时也要归纳数学基本思想 |
四、引导学生进行反思,培养数学思想意识 |
五、重在反复渗透,渗透程度不断加深 |
六、善用现代教育技术 |
第二节 基于问卷调查和访谈结果的渗透原则分析 |
一、顺序性原则 |
二、渗透性原则 |
三、适度适当原则 |
四、启发性原则 |
五、建构性原则 |
第三节 初中函数教学中渗透数学基本思想的注意事项 |
一、教师要重视对学生进行知识和思想的双向培养 |
二、培养学生对数学知识和数学思想的兴趣 |
第五章 教学案例 |
第一节 新课讲授中运用数学基本思想的案例 |
第二节 解题教学中运用数学基本思想的案例 |
第六章 结论 |
第一节 研究结论 |
一、现状调查结论 |
二、渗透策略与原则结论 |
第二节 研究的不足与展望 |
参考文献 |
附录 |
致谢 |
(6)小学数学“有过程的归纳教学”模式建构(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
一、研究背景 |
(一)时代发展、创新人才的培养召唤“过程的、归纳的”教学 |
(二)教育改革诉求“注重过程,处理好‘过程与结果的关系’” |
(三)知识的“先验性”和儿童学习心理机制呼唤“有过程的归纳教学” |
(四)对“有过程的归纳教学”的模式进行研究具有必要性和迫切性 |
二、研究问题 |
(一)“有过程的归纳教学”的理论阐释 |
(二)小学数学“有过程的归纳教学”的模式构建 |
(三)小学数学“有过程的归纳教学”的模式修正 |
三、研究意义 |
(一)理论意义 |
(二)实践价值 |
四、论文结构 |
第二章 文献综述 |
一、关于“过程”及“过程教学”的研究 |
(一)“过程教育”涵义及价值 |
(二)课程中的“过程目标” |
(三)关于“过程教学”研究的回顾与反思 |
二、关于“归纳”及“归纳教学”的研究 |
(一)“归纳推理”涵义及价值 |
(二)数学课程中的“推理能力” |
(三)关于“归纳式教学”研究的回顾与反思 |
三、关于教学模式的研究 |
(一)教学模式的涵义 |
(二)几种典型的教学模式 |
(三)教学模式研究的回顾与反思 |
四、研究的启示 |
第三章 研究设计与方法 |
一、研究思路与框架 |
(一)研究思路 |
(二)研究阶段 |
(三)研究框架 |
二、研究对象的选取 |
(一)研究的学校 |
(二)研究的学科 |
(三)典型课例的选取 |
(四)实践研究的教师和学生 |
三、研究方法的确定 |
(一)文献分析 |
(二)视频图像分析 |
(三)课堂观察 |
(四)访谈 |
(五)作品分析 |
四、资料的整理与分析 |
(一)教学模式理论阐释阶段资料的整理与分析 |
(二)教学模式原型构建阶段资料的整理与分析 |
(三)教学模式实践修订阶段资料的整理与分析 |
五、研究的真实性与可靠性 |
第四章 “有过程的归纳教学”理论阐释 |
一、“有过程的归纳教学”的立论基础 |
(一)“有过程的归纳教学”的理论基础 |
(二)“有过程的归纳教学”的现实基础 |
二、“有过程的归纳教学”的基本内涵 |
(一)归纳式教学 |
(二)过程性教学 |
(三)有过程的归纳教学 |
三、“有过程的归纳教学”的典型特征 |
(一)情境性 |
(二)过程性 |
(三)建构性 |
四、“有过程的归纳教学”的条件系统 |
(一)教学的情境性条件 |
(二)教学的过程性条件 |
(三)教学的建构性条件 |
五、小结 |
第五章 小学数学“有过程的归纳教学”模式原型构建 |
一、小学数学“有过程的归纳教学”典型案例的分析 |
(一)教学内容 |
(二)教学结构 |
(三)教学方式 |
二、小学数学“有过程的归纳教学”模式原型的核心要素 |
(一)“类特征”的学习主题 |
(二)“挑战性”的问题情境 |
(三)“探究性”的操作活动 |
(四)“贯穿性”的归纳建构 |
(五)“嵌入式”的学习评价 |
三、小学数学“有过程的归纳教学”模式原型的设计 |
(一)指导思想 |
(二)功能目标 |
(三)操作流程 |
(四)实现条件 |
四、小结 |
第六章 小学数学“有过程的归纳教学”的教学迭代 |
一、模式的第一轮运用:宏观的尝试和探索 |
(一)第一轮实践研究的问题 |
(二)第一轮教学模式具身化的过程 |
(三)第一轮教学效果的微观分析 |
(四)第一轮教学模式的反思与调整 |
二、模式的第二轮运用:中观的调整与改进 |
(一)第二轮实践研究的问题 |
(二)第二轮教学模式具身化的过程 |
(三)第二轮教学效果的微观分析 |
(四)第二轮教学模式的反思与调整 |
三、模式的第三轮运用:微观的提升与应用 |
(一)第三轮实践研究的问题 |
(二)第三轮教学模式具身化的过程 |
(三)第三轮教学效果的微观分析 |
(四)第三轮教学模式的反思与调整 |
四、三轮教学研究的总结与反思 |
(一)三轮迭代教学研究概述 |
(二)对三轮迭代教学研究的评鉴 |
(三)对“P-I”教学模式的讨论 |
第七章 研究结论与展望 |
一、对研究问题的回应 |
(一)什么是“有过程的归纳教学” |
(二)小学数学“有过程的归纳教学”的模式原型 |
(三)小学数学“有过程的归纳教学”模式的修订与完善 |
二、研究结论 |
(一)“P-I”教学模式阐释 |
(二)“P-I”教学模式的特色与创新 |
(三)小学数学“有过程的归纳教学”的设计策略 |
(四)小学数学“有过程的归纳教学”的实施策略 |
三、研究反思与展望 |
(一)研究反思 |
(二)后续研究展望 |
参考文献 |
附录 |
后记 |
在学期间公开发表论文及着作情况 |
(7)面向教师教育的数学知识研究 ——以S市高中数学教研员为例(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究背景 |
1.1.1 教师教育者的专业发展需要关注 |
1.1.2 数学教师教育者的研究值得重视 |
1.1.3 数学教师教育者的专业知识有待探索 |
1.2 研究问题 |
1.3 研究意义 |
1.3.1 理论意义 |
1.3.2 实践意义 |
1.4 论文结构 |
第2章 文献述评 |
2.1 数学教师教育者的专业知识 |
2.1.1 数学教师教育者的专业知识框架 |
2.1.2 数学教师教育者的专业知识测评 |
2.1.3 文献小结 |
2.2 数学教师教育者的专业发展 |
2.2.1 数学教师教育者的专业发展框架 |
2.2.2 数学教师教育者的专业发展调查 |
2.2.3 文献小结 |
2.3 数学教师教育者的工作实践 |
2.3.1 数学教师教育课堂的学习任务框架 |
2.3.2 数学教师教育课堂的学习任务实践 |
2.3.3 文献小结 |
2.4 文献述评总结 |
第3章 研究方法 |
3.1 研究设计 |
3.1.1 文献分析与框架确立 |
3.1.2 问卷调查与深度访谈 |
3.1.3 现场观察与案例分析 |
3.2 研究对象 |
3.2.1 专家论证对象 |
3.2.2 问卷调查对象 |
3.2.3 深度访谈对象 |
3.2.4 案例研究对象 |
3.3 研究工具 |
3.3.1 论证手册 |
3.3.2 调查问卷 |
3.3.3 访谈提纲 |
3.3.4 观察方案 |
3.4 数据收集 |
3.4.1 专家论证 |
3.4.2 问卷调查 |
3.4.3 深度访谈 |
3.4.4 现场观察 |
3.5 数据分析 |
3.5.1 专家论证 |
3.5.2 问卷与访谈 |
3.5.3 现场观察 |
第4章 研究结果(一):面向教师教育的数学知识框架 |
4.1 文献分析 |
4.1.1 已有框架选取 |
4.1.2 相关成分析取 |
4.1.3 相关类别编码 |
4.2 框架构建 |
4.2.1 相关类别合并 |
4.2.2 相应成分生成 |
4.2.3 初步框架构建 |
4.3 框架论证 |
4.3.1 第一轮论证 |
4.3.2 第二轮论证 |
4.3.3 第三轮论证 |
第5章 研究结果(二):高中数学教研员具备的面向教师教育的数学知识 |
5.1 学科内容知识 |
5.1.1 一般内容知识 |
5.1.2 专门内容知识 |
5.1.3 关联内容知识 |
5.2 教学内容知识 |
5.2.1 内容与学生知识 |
5.2.2 内容与教学知识 |
5.2.3 内容与课程知识 |
5.3 高观点下的数学知识 |
5.3.1 学科高等知识 |
5.3.2 学科结构知识 |
5.3.3 学科应用知识 |
5.4 数学哲学知识 |
5.4.1 本体论知识 |
5.4.2 认识论知识 |
5.4.3 方法论知识 |
5.5 总体分析 |
5.5.1 学科内容知识 |
5.5.2 教学内容知识 |
5.5.3 高观点下的数学知识 |
5.5.4 数学哲学知识 |
第6章 研究结果(三):数学教研活动中反映的面向教师教育的数学知识 |
6.1 案例1 |
6.1.1 第一轮观察:平均值不等式 |
6.1.2 第二轮观察:对数的概念 |
6.1.3 案例1 总体分析 |
6.2 案例2 |
6.2.1 第一轮观察:幂函数的概念 |
6.2.2 第二轮观察:函数的基本性质 |
6.2.3 案例2 总体分析 |
6.3 案例3 |
6.3.1 第一轮观察:幂函数的概念 |
6.3.2 第二轮观察:出租车运价问题 |
6.3.3 案例3 总体分析 |
6.4 案例4 |
6.4.1 第一轮观察:反函数的概念 |
6.4.2 第二轮观察:反函数的图像 |
6.4.3 案例4 总体分析 |
6.5 跨案例分析 |
6.5.1 学科内容知识 |
6.5.2 教学内容知识 |
6.5.3 高观点下的数学知识 |
6.5.4 数学哲学知识 |
6.5.5 案例总体分析 |
第7章 研究结论及启示 |
7.1 研究结论 |
7.1.1 面向教师教育的数学知识框架 |
7.1.2 高中数学教研员具备的面向教师教育的数学知识 |
7.1.3 高中数学教研活动中反映的面向教师教育的数学知识 |
7.2 研究启示 |
7.2.1 教师教育者的专业标准制订需要关注学科性 |
7.2.2 数学教师教育者的专业培训需要提升针对性 |
7.2.3 数学教师专业发展项目规划需要增加多元性 |
7.3 研究局限 |
7.4 研究展望 |
7.4.1 拓展数学教师教育者的专业知识研究 |
7.4.2 深入数学教师教育者的专业发展研究 |
7.4.3 延伸数学教师教育者的工作实践研究 |
参考文献 |
附录 |
附录1 论证手册(第一轮) |
附录2 论证手册(第二轮) |
附录3 论证手册(第三轮) |
附录4 调查问卷(第一版) |
附录5 调查问卷(第二版) |
附录6 调查问卷(第三版) |
附录7 调查问卷(第四版) |
附录8 调查问卷(第五版) |
附录9 访谈提纲 |
附录10 观察方案 |
作者简历及在学期间所取得的科研成果 |
致谢 |
(8)基于数学文化培养小学生数学核心素养的教学策略研究(论文提纲范文)
摘要 |
Abstract |
1.绪论 |
1.1 研究背景 |
1.2 研究问题 |
1.3 研究意义 |
1.4 研究方法和思路 |
2 文献综述 |
2.1 核心概念界定 |
2.2 国内外有关数学文化的研究 |
2.3 国内外有关小学数学核心素养的研究 |
3 数学文化教学培养小学生数学核心素养的依据和内容分析 |
3.1 数学文化教学培养小学生数学核心素养的依据 |
3.2 数学文化教学培养小学生数学核心素养的内容分析 |
4 基于数学文化培养小学生数学核心素养的教学策略分析 |
4.1 基于数学文化培养小学生数学核心素养的教学原则 |
4.2 基于数学文化培养小学生数学核心素养的教学策略 |
5 基于数学文化培养小学生数学核心素养的教学案例设计 |
5.1 《涂色的正方体》 |
5.2 《田忌赛马的对策》 |
5.3 《神奇的“数独”》 |
6 结语 |
6.1 研究结论 |
6.2 反思与展望 |
参考文献 |
致谢 |
(9)初中生数学建模能力培养研究(论文提纲范文)
摘要 |
Abstract |
导论 |
一、研究的缘起和意义 |
二、研究综述 |
三、核心概念及论题说明 |
四、研究思路 |
五、研究方法 |
第一章 数学建模教育的背景、发展历程及理论基础 |
第一节 数学建模教育的背景 |
一、数学建模的兴起 |
二、数学建模教育的育人价值 |
第二节 数学建模教育的发展历程 |
一、数学建模教育的萌芽起步阶段 |
二、数学建模教育的初步发展阶段 |
三、数学建模教育的稳步发展阶段 |
第三节 数学建模教育的理论基础 |
一、问题解决理论 |
二、知识迁移理论 |
三、深度学习理论 |
第二章 初中数学建模教学内容的文本分析 |
第一节 数学课程标准对数学建模能力培养的要求 |
一、对课程设计思路的要求 |
二、对课程目标的要求 |
三、对课程实施的建议 |
四、对教材编写的建议 |
第二节 初中数学教材中数学建模内容的呈现与编排 |
一、初中数学教材中数学建模内容的呈现 |
二、初中数学教材中数学建模内容的编排 |
第三节 初中数学教材与课程标准的一致性 |
一、初中数学教材与课程标准的一致性分析 |
二、初中数学教材与课程标准的一致性总结 |
第三章 初中生数学建模能力培养的现状调查 |
第一节 初中生数学建模能力培养的课堂考察 |
一、课堂考察与分析 |
二、教师访谈与分析 |
第二节 初中生数学建模的方式及规律 |
一、七年级学生数学建模的方式及规律 |
二、八年级学生数学建模的方式及规律 |
三、九年级学生数学建模的方式及规律 |
第三节 初中生数学建模的过程及数学建模能力结构 |
一、初中生数学建模的一般过程 |
二、初中生数学建模能力结构 |
第四章 初中生数学建模能力培养的困境分析 |
第一节 初中数学建模教学内容的局限性分析 |
一、数学建模教学内容与学生现实脱节 |
二、教学内容缺少真正意义的数学建模问题 |
三、教学内容与初中生数学建模能力培养不适切 |
四、教学内容局限于教材,忽视了对教学资源的开发 |
第二节 初中数学建模教学的困境分析 |
一、学校和教师对数学建模教学不够重视 |
二、数学建模教学方式有待改进 |
三、数学建模教育理念不适应数学建模能力培养 |
四、数学建模教学缺乏培训和理论指导 |
第三节 初中生数学建模学习困难分析 |
一、数学建模学习方式需要转变 |
二、尚未掌握数学建模的学习路径 |
三、学习进阶过渡中遇到障碍 |
第五章 初中生数学建模能力培养策略 |
第一节 制定初中生数学建模能力培养策略的依据 |
一、依据对初中数学建模教学内容的分析 |
二、依据初中数学建模教学现状 |
三、依据初中生数学建模学习现状 |
第二节 初中数学建模教学内容选择策略 |
一、反映数学本质,突出数学学科核心素养 |
二、贴近学生现实,体现数学建模的真实性 |
三、注重数学建模过程性,体现数学建模能力培养的阶段性 |
四、注重选择变式问题,促进问题解决能力的迁移 |
五、增加开放性和探究性的问题,全面提升数学建模能力 |
六、面向学生的长远发展选择数学建模内容 |
第三节 初中生数学建模能力培养的教学策略 |
一、由平铺直叙转变为创建有利于数学建模的真实问题情境 |
二、由教碎片化知识转变为教完整的建模知识 |
三、由教会做题转变为教会解决问题 |
四、由强调记忆转变为致力于知识迁移 |
五、由重结果性评价转向过程性评价与结果性评价并重 |
六、由单项能力训练转变为数学建模能力综合提升 |
第四节 初中生数学建模学习策略 |
一、学习完整的数学建模知识 |
二、学会条件化地储存知识 |
三、学会深度加工知识 |
四、掌握提取知识的路径 |
五、改善数学建模的程序与方法 |
六、学会类比与联想 |
七、学会知识迁移 |
结语 |
附录一 七年级数学教师访谈提纲 |
附录二 八年级数学教师访谈提纲 |
附录三 九年级数学建模教师访谈提纲 |
参考文献 |
在读期间相关成果发表情况 |
致谢 |
(10)小学生数学符号语言发展阶段及教学策略研究(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
第一节 研究的缘起 |
一、时代发展的趋势 |
二、国家课标的要求 |
三、教学实践的反思 |
第二节 文献综述 |
一、文献的量化分析 |
二、文献的质性分析 |
第三节 研究框架和方法 |
一、研究框架 |
二、研究方法 |
第四节 研究的创新之处与技术路线 |
一、研究的创新之处 |
二、研究的技术路线 |
第五节 研究的目的与意义 |
一、研究的目的 |
二、研究的意义 |
第二章 研究的理论基础 |
第一节 数学符号语言概述 |
一、数学符号语言的内涵 |
二、数学符号语言的特征 |
三、数学符号语言的要素 |
四、数学符号语言发展的影响因素 |
第二节 数学符号语言阶段划分 |
一、阶段划分的理论基础 |
二、阶段划分的现实依据 |
三、阶段划分的结果 |
第三章 小学生数学符号语言发展第一阶段:直观感知 |
第一节 直观感知阶段的课标要求 |
第二节 直观感知阶段的教材呈现 |
第三节 直观感知阶段的特征 |
第四节 直观感知阶段的教学建议 |
一、新知与旧知,注重数学符号经验 |
二、算法与算理,强调符号理解过程 |
三、精选教材,灵活运用图片符号 |
四、互动合作,动手操作数学符号 |
第四章 小学生数学符号语言发展第二阶段:具体运算 |
第一节 具体运算阶段的课标要求 |
第二节 具体运算阶段的教材呈现 |
第三节 具体运算阶段的特征 |
第四节 具体运算阶段的教学建议 |
一、立足需求,培养符号计算兴趣 |
二、彰显问题,培养符号问题意识 |
三、把握关系,培养符号结构观念 |
第五章 小学生数学符号语言发展第三阶段:形式运算 |
第一节 形式运算阶段的课标要求 |
第二节 形式运算阶段的教材呈现 |
第三节 形式运算阶段的特征 |
第四节 形式运算阶段的教学策略 |
一、专题呈现,归类分析 |
二、思维显化,符号表示 |
三、成因分析,抓关键 |
四、结构展示,整体感知 |
第六章 结论与展望 |
第一节 本研究的主要结论 |
一、小学生数学符号语言各要素的关键点 |
二、小学生数学符号语言阶段发展及特征描述 |
三、小学生数学符号语言阶段划分框架 |
第二节 小学生数学符号语言发展阶段间的关系 |
第三节 小学生数学符号语言与其它素养发展的关系 |
一、数学符号意识与数感、运算能力、推理能力、模型思想关系 |
二、数学符号意识与几何直观、数据分析观念、应用意识和创新意识的关系 |
第四节 本研究的反思与展望 |
参考文献 |
附录 |
附录 A 教师访谈提纲 |
附录 B 小学生数学符号学习困难访谈提纲 |
附录 C 课堂教学观察记录表 |
附录 D 专家评价量表 |
攻读学位期间发表的论文和研究成果 |
致谢 |
四、数学中“悟”的教学策略探索(论文参考文献)
- [1]动态数学技术融合初中动态几何问题的教学研究[D]. 王思敏. 广西师范大学, 2021(09)
- [2]整体性教学在高中数学中的有效应用 ——以不等式为例[D]. 王塑. 辽宁师范大学, 2021(08)
- [3]平面向量数量积教学的调查研究[D]. 官丽宁. 广西师范大学, 2021(09)
- [4]磨的是课,成的是人 ——数学评优课磨课活动的研究[D]. 朱晨菲. 华东师范大学, 2021(08)
- [5]农村初中生对数学基本思想理解与应用的现状及教学研究 ——以山西省运城市为例[D]. 陈红静. 中央民族大学, 2021(12)
- [6]小学数学“有过程的归纳教学”模式建构[D]. 石迎春. 东北师范大学, 2021(09)
- [7]面向教师教育的数学知识研究 ——以S市高中数学教研员为例[D]. 沈中宇. 华东师范大学, 2021(08)
- [8]基于数学文化培养小学生数学核心素养的教学策略研究[D]. 洪艺萍. 西南大学, 2020(05)
- [9]初中生数学建模能力培养研究[D]. 刘伟. 曲阜师范大学, 2020(01)
- [10]小学生数学符号语言发展阶段及教学策略研究[D]. 张瑞利. 云南师范大学, 2020(01)