问:定积分与二重积分,三重积分的区别与联系是什么,急,在线等
- 答:问题很抽象。
从变量维度区分:
一般的定积分指的一元函数积分;二重积分是二元函数的积分,三重积分是三元函数的积分。
从几何意义来说:
一般定积分是求面积;二重积分求曲顶柱体体积,三重积分求空间封闭区域体积 - 答:从应用上来说,定积分用来算曲边梯形面积;二重积分可以算空间旋转体的面积于体积,我觉得二重积分其实是针对旋转体的,因为空间体是三维的,需要xyz三个坐标表示,但是旋转体的特性便是根据xy平面上的旋转面的数据就可以推算旋转体的体积于面积,所以就有了二重积分。比如由直角三角形绕直角边旋转一周得到圆锥体的体积面积计算;三重积分就是来算二重积分无法计算的非旋转体的体积。比如三菱锥。
问:定积分,二重积分
- 答:微积分的两大部分是微分与积分。一元函数情况下,求微分实际上是求一个已知函数的导函数,而求积分是求已知导函数的原函数。所以,微分与积分互为逆运算。
定积分就是求函数f(X)在区间[a,b]中图线下包围的面积。即由 y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。
二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。 - 答:y换,x不换
原式=(5x²+3×25x²)-(x²+3x²)
=80x²-4x²
=76x² - 答:1.开门见山直接回答知识点
2.对相关知识点进行延伸
3.规范排版,内容充实更容易通过认证哦
4.补充参考资料(没有可以忽略哦~)
问:如何看待微积分对数学的影响1000字论文
- 答:微分学包括极限、导数与微分、积分,在(理论数学)里说过微分是变化量的极限,导数是增量比的极限,它们都是极限.它们的计算仿佛相同,但是所表示的概念是不同的.一个是全增量,一个是增量比.