一、通道基底局部沉降的治理(论文文献综述)
张海涛[1](2021)在《淮南煤田奥陶系古岩溶成因机理及预测研究》文中认为华北煤田奥陶系碳酸盐岩内古岩溶十分发育,成为岩溶水储存和运移的主要场所与通道。目前,矿山对奥陶系岩溶研究多集中于含水层富水性和渗透性,缺乏对古岩溶发育特征及其成因机理研究,致使矿山开采过程中岩溶水患预测不准、岩溶水害时有发生。淮南煤田位于华北板块东南缘,为一 NWW展布的对冲式断褶构造带,地质及水文地质条件极为复杂。随着煤田逐渐向深部开采,奥陶系岩溶水害威胁程度日趋严重,古岩溶研究工作已迫在眉睫。因此,系统开展淮南煤田奥陶系古岩溶发育特征、分布规律及成因机理研究,不仅对淮南煤田及类似水文地质条件矿区的深部煤炭资源开采过程中岩溶水害防治具有重要的指导作用,而且对进一步认识华北地区奥陶系古岩溶的形成与演化也具有深远意义。本文以岩溶地质学、水文地质学、古地理学、沉积学、构造地质学和岩石力学等多学科交叉理论为指导,采用野外调查、岩芯观测、薄片鉴定、室内实(试)验、数值模拟、模型预测、地质统计分析等方法与手段,对淮南煤田奥陶系古岩溶发育特征、演化过程及其成因机理等方面开展了系统深入研究,并对古岩溶发育程度进行了预测。取得主要成果和认识如下:(1)系统研究了淮南煤田奥陶系古岩溶的发育特征、充填特征和分布特征:①淮南煤田奥陶系碳酸盐岩中主要发育有溶孔、裂缝、溶洞和岩溶陷落柱等四种古岩溶,且以裂缝和溶洞为主;②裂缝和大溶洞多为充填型,半充填和未充填型次之,小溶洞多为半充填型,其次是未充填型,全充填型最少;③裂缝、大溶洞和岩溶陷落柱主要沿着断层带分布,在垂向上具有明显的分带性。(2)确定了淮南煤田奥陶系古岩溶的形成期次、形成时间、形成环境和侵蚀性流体来源:①沉积岩溶形成于早奥陶世到中奥陶世,主要发生在海平面附近,是海水和大气降水共同溶蚀作用的结果;②风化壳岩溶形成于晚奥陶世到早石炭世,主要与大气降水的长期淋滤作用有关,在奥陶系地层顶部形成了风化壳孔缝洞系统,且垂向上存在明显的“四带”结构,即地表残积带、垂直渗流带、水平潜流带和深部缓流带;③压释水岩溶形成于中石炭世至早三叠世,发生在地下中高温、埋藏封闭环境中,其形成主要与上覆石炭-二叠系地层在成岩压实过程中释放出有机酸和酸性压释水有关;④热液岩溶发生在晚三叠世至晚白垩世期间的地下高温、深埋环境中,其形成主要与地下深部的岩浆热液活动有关;⑤混合岩溶形成于早白垩世至晚古近纪,发生在潘集和陈桥背斜的碳酸盐岩露头区的断裂带周围,其形成主要是大气淡水与深部地层水以及热液流体的混合溶蚀作用有关。(3)系统阐述了碳酸盐岩岩性、岩层结构、侵蚀性流体、断裂构造、古地貌与古水文、岩浆活动、以及岩溶作用时间等因素对淮南煤田奥陶系古岩溶发育的控制作用:①溶蚀试验表明,淮南煤田奥陶系碳酸盐岩溶蚀能力由强到弱依次为灰岩>角砾灰岩>白云质灰岩>泥质灰岩>灰质白云岩>白云岩;②水文地球化学模拟发现,侵蚀性流体溶蚀能力主要受流体温度、酸性气体成分(包括CO2和H2S等)和压力、以及混合流体比例等控制;③多期构造运动数值模拟结果表明,早燕山期和晚燕山期的断裂构造对淮南煤田奥陶系古岩溶发育起着重要作用,研究区中部地区是拉张裂缝和古岩溶发育的最佳位置;④奥陶系风化壳古地貌与古水文控制着奥陶系古岩溶的垂向发育特征,基岩风化面古地貌与古水文控制着奥陶系含水层的富水性和渗透性;⑤岩浆活动和岩溶作用时间对淮南煤田奥陶系古岩溶的形成和演化也起着重要作用。(4)以淮南煤田岩溶陷落柱为研究对象,推导出圆台形顶板塌陷判据公式,模拟分析了岩溶陷落柱基底溶洞和顶板塌陷的形成与演化过程,揭示了岩溶陷落柱形成机理。淮南煤田岩溶陷落柱的形成主要与晚三叠世至古近纪的热液溶蚀和混合溶蚀有关,印支期和早、晚燕山期形成的断裂构造、岩浆活动和碳酸盐岩半暴露区对淮南煤田岩溶陷落柱的形成与演化起到了关键作用。(5)建立了 GIS-AHP耦合模型,预测了淮南煤田奥陶系古岩溶发育程度及其平面分布:淮南煤田奥陶系古岩溶发育程度整体为中等~极强,仅西北、西南和东北部分地区奥陶系古岩溶发育程度表现为中等偏弱~弱,古岩溶发育强~极强区域主要集中在中部矿区。通过对比预测结果和区内岩溶陷落柱、奥陶系含水层突(涌)水点实际揭露位置,验证了预测模型、评价指标和指标权重的正确性,为深部岩溶水害防治工作提供了重要参考依据。图[106]表[36]参[327]
李凤丽[2](2021)在《瓦斯生运聚散的构造动力学过程及数值模拟研究 ——以阳泉矿区为例》文中指出本文以构造演化为主线,在区域地质背景、野外构造观测、煤田地质资料分析的基础上,结合构造岩的显微变形特征及包裹体分析,研究了阳泉矿区构造变形和演化特征及其对煤层沉积、埋藏和变形的控制作用,分析了构造变形期的应力-应变环境。结合不同类型煤体结构分布、构造煤孔裂隙结构和甲烷吸附特性的系统表征,应用CBMHS V1.0软件模拟了阳泉矿区瓦斯生运聚散的动力学过程,深刻揭示了矿区瓦斯演化的构造控制机理。主要研究成果如下:(1)阳泉矿区褶皱构造较为发育,以NNE-NE向褶皱为主,控制着矿区的整体构造形态;近EW向、NW向褶皱发育相对较少,对矿区构造形态的影响相对较小。根据构造类型及其组合形式、变形程度的差异,将矿区分为西部大型褶皱发育区、东北部弱褶皱变形区、中部叠加褶皱发育区、中东部弱褶皱变形区、中南部断褶区和南部复杂叠加褶皱区等6个构造变形区,揭示了阳泉矿区主体构造格局形成于燕山中期上地壳中低温条件下的脆性-脆韧性变形环境。(2)在区域构造演化的控制下,研究区聚煤基底较为平坦,基本处于海陆交互相的沉积环境,沉积了石炭-二叠纪煤系。聚煤作用结束后,阳泉矿区先后经历了印支期、燕山期和喜马拉雅期三期构造运动,分别形成近EW向、NNE-NE向和NW向褶皱和断裂构造,不仅改造了煤层的原始赋存状态,还控制着煤体变形和构造煤的分布。3煤和15煤构造变形相对较弱,以脆性变形为主,I、II、III类煤体结构均有发育,以II类煤体结构为主,II类和III类煤体结构多沿褶皱轴部展布,集中分布在褶皱轴部、褶皱叠加区以及断裂和褶皱叠加区等构造复杂区。(3)煤的构造变形影响其孔-裂隙结构及瓦斯吸附能力。随着煤体变形程度的增加,显微裂隙结构复杂性增强,空间分布非均质性减小;孔体积和孔比表面积增大(尤其是大孔和介孔),孔隙形态渐趋复杂,大孔之间的连通性减小。煤的微孔和介孔具有多重分形特征,且随着煤体变形的增强,孔径分布趋于连续和均匀、连通性增强。甲烷等温吸附实验、吸附特征曲线以及表面自由能分析表明,随着煤体变形程度的增加,煤的甲烷吸附能力逐渐增加。煤体变形主要是通过影响煤的孔隙结构进而影响煤的甲烷吸附行为,在煤体变形过程中,孔隙(尤其是1-10 nm孔径段孔隙)逐渐增多,孔体积和孔比表面积增大,孔径分布趋于连续和均匀,是强变形构造煤瓦斯吸附能力增强的主要原因。(4)通过数值模拟将研究区瓦斯生运聚散动力学过程划分为6个阶段,即阶段I(晚石炭世-早二叠世)、阶段II(中二叠世-晚三叠世)、阶段III(早中侏罗世)、阶段IV(晚侏罗世-早白垩世)、阶段V(晚白垩世)和阶段VI(新生代)。阶段I为浅埋藏生物成因气阶段,煤层生成少量的生物成因气;阶段II为煤层快速沉降阶段,煤层开始第一次生烃,生气量较少,聚散作用微弱,含气量较低;阶段III为煤层埋深波动阶段,煤层生气量极少,但气体散失作用依然存在,煤层含气量和储层压力下降;阶段IV为煤层第二次生烃阶段,在高异常古地热场作用下,煤层大量生气,并伴随着强烈的扩散散失、盖层突破散失和渗流散失作用,是研究区瓦斯演化的关键阶段;阶段V和阶段VI煤化作用完全停止,为瓦斯散失阶段。(5)构造是瓦斯生运聚散演化过程的主控因素。区域构造背景下,煤层的沉积、埋藏、抬升、构造热事件以及矿井构造的发育共同控制着煤的受热-成熟-生烃-聚集-散失的动力学过程。聚煤期构造通过控制研究区聚煤基底及沉积环境控制煤层的煤质特征、煤厚及展布,进而影响煤层瓦斯的生成和散失。印支期构造作用主要通过控制煤层的沉降,进一步控制煤层瓦斯的生成和散失;燕山期,瓦斯生运聚散演化最为活跃,构造热事件是影响本期煤层瓦斯生成和散失的主控因素,同时,构造应力场的转变及矿区构造形态也是影响煤层瓦斯聚散行为的重要因素;喜马拉雅期,瓦斯演化以散失作用为主,矿区构造形态以及矿井构造的展布继续控制着煤层瓦斯的聚散过程。(6)构造应力作用下构造煤的发育和分布也显着影响着瓦斯的运移、聚集和散失。一方面,弱变形构造煤的渗透性强于强变形构造煤,研究区弱变形和强变形构造煤分布区在燕山期分别表现出较强和较弱的瓦斯渗流散失作用;另一方面,强变形构造煤吸附空间和吸附势明显高于原生结构煤,表现出更强的瓦斯吸附能力,研究区强变形构造煤的发育对区内3煤和15煤瓦斯的聚集及高瓦斯含量区的分布具有重要控制作用。该论文有图98幅,表20个,参考文献297篇
王星辉[3](2021)在《迎泽大街下穿太原站施工沉降控制关键技术研究》文中指出太原市中心城的空间结构体现为“单中心+外围工矿组团”的圈层式特征,在空间和功能上老城区的中心地位尤为突出,太原站作为山西省的重要标志建筑,其周边配套市政工程并不完善。迎泽大街下穿太原站工程为实现太原站铁路东西两侧贯通、补充区域网具有重要的战略意义,本文通过分析迎泽大街下穿太原站通道工程设计总体思路、工程建设条件和既有建(构)筑物的现状;分析了下穿施工、场地特殊性、地下障碍物、施工前管线迁改等方面对沉降的影响因素;从施工工序的角度对既有轨道道床加固技术、顶管施工技术、明挖施工技术、管幕施工沉降控制技术以及应急技术进行具体分析,凝练和总结出迎泽大街下穿太原站工程沉降整体控制技术;最后通过沉降监测验证了迎泽大街下穿太原站施工沉降整体控制关键技术的科学合理性,主要成果如下:(1)迎泽大街下穿工程分别下穿太原站的南北两侧,工程周围既有建(构)筑物复杂众多、地下管线错综复杂、道路交通繁忙,人口密集。施工中基坑开挖有可能引起基坑侧壁坍塌,造成地质灾害;施工风险较大,设计中应考虑对既有结构物进行可靠加固,避免引起站房、站台及股道变形沉降。(2)通过采用有限元数值分析法和Peck经验公式法模拟计算轨道沉降值,对既有轨道及道床沉降加固进行了必要性分析得出:钢管顶进施工中最大沉降量分别为12.7mm和14.1mm,均大于相关规定的路基沉降控制值10mm和线路轨道静态几何尺寸容许偏差管理值11mm;同时对施工中行包通道、雨棚管桩基础和雨棚地表变形的三种工况进行模拟计算,可知计算沉降满足安全性的要求,但为尽量减少变形,施工中需加强监测,并跟踪注浆。(3)通过从原理及技术两个角度对既有铁路线路及道床加固沉降控制技术分析得出:受影响段铁路可采取的三种加固方法:线路扣轨加固法、注浆加固法和管棚加固法;通过分别对既有铁路、无柱雨棚、接触网基础、站台墙、行包通道及各类管线在顶管施工过程中的沉降控制技术研究得出:首先要在顶管机通过前对既有结构基础提前进行注浆加固处理;其次,按试验段优化数据设定土仓压力、掘进速度等施工参数,控制出土量,避免超挖造成塌方;此外应根据监测结果及时调整掘进参数,确保既有线运营安全。(4)通过分析下穿工程明挖段施工和管幕施工整体沉降控制技术得出:明挖段施工整体技术包括三种施工技术:工作井和明挖暗埋段围护结构采用钻孔灌注桩+钢管(钢筋混凝土)内支撑的支护形式;敞开段围护结构采用SMW工法桩+钢管(钢筋混凝土)内支撑的支护形式;主体结构采用钢筋混凝土结构。管幕施工整体沉降控制技术主要包括:选用有控制沉降能力的顶管机、选取满足相应精度要求的钢管、合理确定顶进顺序、严格控制顶管进出洞参数和科学合理的控制顶管机掘进参数等五个技术内容。(5)通过在下穿工程管幕施工中主要对下穿区段10条铁路线路、7个站台及太原站无柱雨棚柱进行沉降监测,并与沉降控制值及标准限界进行比较分析研究得出:钢管顶进完成轨道沉降最大值2mm,累计值均小于最大允许沉降值10mm;站台累计最大沉降均小于10mm,站台高度符合标准要求;雨棚柱没有侵限现象发生,不存在倾斜情况,表明下穿施工对建(构)筑物扰动满足要求,验证了下穿工程施工整体控制沉降技术科学合理。
白春[4](2020)在《考虑土—结构相互作用的煤矿采动对RC框架结构模型抗震性能影响与分析》文中研究指明煤炭作为我国的重要战略资源,由于多年来一直被高强度开采,故而形成了大量的采空区。随着中国工业化发展进程的加快,我国土地资源日趋紧张,诸如建筑物、工业厂房、道桥等工程建设逐渐向采空区边缘地带推进。但我国多数矿区位于有抗震设防烈度要求的地带,地震作用下采空区边缘地带建筑结构遭受煤矿采动灾害与地震灾害的不利影响。目前关于煤矿采动灾害与地震灾害影响下,RC框架结构地震模拟振动台的试验鲜有报道,本文依托国家自然科学基金项目“《地震作用下采动区岩层动力失稳与建筑安全控制研究》项目编号(51474045)”,根据《建筑抗震试验规程》(JGJT101-2015)及《建筑抗震设计规范》(GB50011-2010),利用PKPM软件设计原型六层钢筋混凝土框架结构。基于开采沉陷学、结构动力学、地震工程学,通过现场调研、试验研究与数值模拟相结合的方法,以采空区边缘地带RC框架结构为研究对象,结构在经过采动灾害长期影响下产生双向不均匀沉降后,对结构在地震灾害作用下其抗震性能劣化机制及动力灾变规律开展研究工作,本文主要在以下几个方面进行探讨,主要研究成果如下:(1)煤矿采动影响下RC框架结构振动台试验设计。为了模拟采动灾害引起的不均匀沉降,设计采动模拟试验台。基于一致相似率理论,设计几何相似比为1/10的强度模型,横向与纵向均为两跨,高宽比为2.25。选用微粒混凝土和镀锌铁丝模拟原型混凝土与钢筋,为了进一步提高振动台试验的精确度,考虑非结构构件自重及活荷载的影响。(2)通过振动台试验,研究试验模型在7度设防、8度设防地震激励下的动力响应,结构破坏形式及破坏机理。煤矿采动扰动下结构产生不均匀沉降,对结构产生初始损伤,结构自振频率降低。不均匀沉降量越大,结构的自振频率降低越多,采动初始损伤会加剧结构在地震作用下的震害。采动影响程度增大,结构底部容易过早的发生塑性损伤,消耗地震传到上部结构的能量,不利于地震能量向上层传递与分散,结构底部极易形成塑性损伤薄弱区。强震扰动下煤矿采动损伤建筑最大层间位移角超过规范限值,薄弱层位置从一层扩展到二层,存在薄弱区向上扩展现象,底部结构塑性铰急剧增加。角柱损坏最严重,中柱损害最小,抗震稳健性降低。动力破坏试验表明,采动损害影响最大的结构,其抗震稳健性衰减速率越快,角柱AI最先发生破坏失稳,倒塌范围逐渐扩大形成竖向倒塌区域,且存在P-△二阶效应作用对结构倒塌的贡献,最终导致整个底部结构的垮塌。(3)单向与双向不均匀沉降对建筑物的损害。两种不均匀沉降影响下,共同点是:首层构件附加应力或附加变形最大,应力集中主要位于梁端、柱端、框架节点处;随着楼层位置增加,采动影响作用大幅度衰减。不同点是:单向不均匀沉降影响下,柱沿建筑物倾斜方向以单向偏心受力为主,梁以弯曲变形为主。而双向不均匀沉降影响下,柱沿对角线方向呈双向偏心,梁存在弯扭变形。(4)双向地震激励下,分别考虑土-结构相互作用与刚性地基假定,对煤矿采动损伤建筑结构抗震性能的影响。为减少数值模拟计算成本,提高结构仿真分析效率,对地基土体的影响范围进行了多种计算,提出了确定有限元模型地基土体有效范围的方法。与刚性地基假设对比可知,考虑土-结构相互作用后,结构的约束相对减弱,表现为柔性体系,结构自振周期变长。与刚性地基相比,结构在X与Z向的顶层加速度反应减弱,煤矿采动影响越大,加速度降低幅值越大。考虑土-结构相互作用后的结构顶点位移要大于刚性地基,加速度时程曲线变化较柔,X方向的动力反应要强于Z向。煤矿采动对建筑物的影响作用越大,结构顶点位移变化越显着。当考虑土-结构相互作用后,结构的最大层间位移角普遍比刚性地基要偏小,层间位移角的变化趋势比刚性地基要缓,尤其是对于不均匀沉降影响下的结构,这种变化更为显着。与刚性地基相比,考虑土-结构相互作用后,水平层间剪力随楼层位置增加而减小。(5)对不同土层下的煤矿采动影响下框架结构倒塌破坏规律进行了研究。不同土体条件下,结构的破坏时间所有差别。基于刚性地基假设下的结构破坏时间多数要早于硬土和软土地基,土质越软,这种破坏延迟效果越显着。在采矿采动影响相同的条件下,软土地基结构整体破坏情况要小于硬土地基,小于刚性地基。地基土体越软,不均匀沉降量越大,结构在地震动力作用下沉入土体的深度越大,结构侧向变形越严重。倒塌破坏过程表明结构的破坏既有“柱铰”破坏,又有“梁铰”破坏,存在“混合倒塌”机制现象。考虑土-结构相互作用后,上部结构反应较大,构件不同程度形成塑性损伤,耗散掉部分地震输入能,底部整体倒塌概率降低。该论文有图122幅,表55个,参考文献204篇。
王浩[5](2020)在《红山隧道仰拱变形机理及控制措施研究》文中研究指明随着我国铁路的迅猛发展,铁路隧道的建设规模和数量也日益増多。由于隧道所处地质环境复杂多变,底部结构仰拱变形现象时有发生,严重影响了铁路运营和工程建设的安全,因此,开展对铁路隧道仰拱变形机理及其整治技术的研究具有重要的理论意义和工程实用价值。以京沈高铁红山隧道仰拱治理工程为背景,通过现场实践和资料收集对红山隧道基底变形规律、原因、情况分析;对凝灰质砂岩进行常规物理试验、三轴压缩试验,研究了围岩力学性能劣化及变形演化规律;通过FLAC3D数值模拟软件,对隧道仰拱结构及基底围岩位移变化情况进行数值分析,得到整治前后仰拱竖直位移变化,并通过现场监测手段对仰拱位移情况进行监测,将监测数据与数值模拟结果对比分析,得到以下结论:(1)仰拱隆起变形的四种破坏模式:挤压流动变形、膨胀性岩石遇水变形、挠曲褶皱变形、剪切错动变形;仰拱力学作用大致分为三类:水平梁作用,承压作用、软弱围岩加固补强作用;引入围岩劣化理论,发现围岩强度下降和隧道长期变形的主要原因是剪切强度(c,?)的降低。强度劣化模型可有效的表现出围岩实际的强度和变形。(2)不同含水率以及不同围压下的凝灰质砂岩三轴压缩试验所得数据发现:随着试件含水率的增大,试件抗压强度明显下降,应变也不断扩大,说明在三轴压缩试验中,试件受到水的影响呈现出明显的应变软化特征;随着含水率从0%变化到10.8%的过程中,抗剪强度粘聚力c逐渐减小,减小比例分别为11%、22%、31%。(3)数值模拟结果显示:相同疏松层厚度条件下,围岩黏聚力越低,基底隆起位移越大。黏聚力分别下降10%、20%、30%时,监测点最大位移分别为2mm、2.7mm、6.45mm。在围岩相同劣化条件下,随着围岩底部疏松层厚度增加,底部结构隆起位移逐渐增大。优化锚杆设计,进行数值分析,发现锚杆长度为4m和直径为28时,底鼓治理效果最为显着。(4)监测数据结果显示:各监测断面竖直位移值均出现不同程度降低,且最大位移均出现在隧道仰拱中间部位,具有明显的“空间效应”。相关监测数值与治理前相比,位移值均有下降,基底位移最大下降5.3mm,由9.6mm降至4.2mm,说明整治效果显着。(5)采取纵梁、袖阀管和预应力锚杆形成共同受力体系的综合治理措施,通过现场监测发现隧道底部结构的位移最大值从6.3mm降为2.47mm,结构受拉作用明显减少,特别是仰拱中线位置处围岩状态得到了改善。通过模拟结果与监测结果对比来看,竖直位移模拟值与监测值的数值相差不大,变形规律基本一致,治理效果显着,位移值最大下降5mm。论文有图66幅,表25个,参考文献57篇。
姜鹏[6](2020)在《TRD墙桩一体防渗与支护机理研究及应用》文中进行了进一步梳理我国已进入了基础设施建设的飞速发展时期,对工程质量和工期要求越来越高,激发了大量的新技术的发展和应用。地铁车站、建筑基坑等工程的止水帷幕成为保证工程安全建设的基础,等厚水泥土连续墙(TRD)工法作为一种新型止水帷幕,具有止水性能好、施工周期短等优点,现已在全球大量应用。同时,可通过内插H型钢替代钻孔桩,实现止水和支护的“两墙合一”,形成墙桩一体的新型支护形式,因型钢可回收,不仅节约了工期,同时降低了工程成本。现有TRD工法防渗和支护机理未得到系统的研究,多以施工经验或借鉴其他工法而来,本研究针对TRD工法防渗和支护机理开展研究,通过理论分析、数值模拟、室内试验、模拟试验及现场试验相结合的手段,以提高TRD工法施工质量、安全和经济性为目标,针对成墙质量影响机制、TRD混合模型试验和抗渗性分析、墙桩一体支护机理进行了研究,最终获得各关键参数的计算方法,形成了 TRD工法墙桩一体的设计依据,并进行工程应用。本研究主要工作及创新成果如下:(1)通过不同配比试验,研究了不同水泥掺量、综合含水率和养护周期对的水泥土强度和抗渗能力影响机制,获得了 TRD工法适合青岛地区的最优水泥掺量为20%;水泥土强度随着水泥掺量的增加而增大,渗透系数随水泥掺量的增加而降低,且含水率越低时,作用越明显;水泥土的强度与综合含水率呈现负相关,综合含水率与渗透系数呈现正相关,且随水泥掺量的不断作用越发显着;龄期对水泥土强度和渗透系数-影响较小。(2)TRD混合过程是影响地层和水泥混合均匀的重要过程,研发了TRD模型试验系统,模拟不同混合参数和砂层参数对墙体质量的影响,并开展了现场试验,验证模型试验装置的正确性,以混合均匀度为监测对象,获得了不同工况条件下的不同埋深的砂层含量随时间变化曲线,对比分析出各参数对成墙质量的影响程度,基于统计学理论定义了混合指数,评价TRD工法的混合均匀程度;利用COMSOLMultiphysics有限元软件,建立了描述土体混合不均的差分函数,研究墙体混合均匀性对不同厚度和入土深度墙体的基底涌水量的影响;(3)通过型钢水泥土支护工作机理的分析,建立计算模型;得到了有无冠梁条件下,墙体力矩、转角和水平位移的随深度变化的计算公式,以协调变形和水泥土抗拉强度为边界条件,研究了水泥土承载力,并开展大型现场试验,验证各公式计算准确性,并以基坑水平位移控制标准为条件,获得了型钢插入间距的计算公式。(4)TRD稳定性作为安全施工的基础,通过分析TRD工法槽壁失稳形态,采用极限平衡法,建立TRD槽壁稳定模型,获得了槽壁安全系数计算公式,通过分析泥浆屈服强度工作区间和上覆荷载条件,得到了适用于TRD工法的安全系数计算公式,获得了典型分段安全系数曲线图,并分别研究了地下水、泥浆屈服强度、荷载大小与距离对安全系数的影响,定义了荷载安全距离,为TRD安全施工提供了理论基础;(5)基于研究成果,依托青岛地铁1号线工程实践,对TRD工法设计进行优化,形成保证基坑高效抗渗的TRD设计方法和成墙质量检测方法。
马鹏辉[7](2020)在《黄土地质灾害链链生演化特征及机制研究》文中研究说明黄土独特的力学特征(垂直节理发育、湿陷性、大孔隙等),导致黄土地质灾害的发生多与水有关,再加上国家重大战略(“西部大开发”、“一带一路”)在黄土高原陆续实施和进行,黄土地质灾害以单体灾害存在形式越来越少,一种黄土灾害发生后,往往会引起其他类型黄土地质灾害相继或滞后发生,形成了复杂的黄土地质灾害链,呈现着随机性、差异性、多样性等特点。其链生效应导致黄土地质灾害的影响范围更广,破坏性更强。黄土地质灾害链是当前黄土地质灾害研究的热点新命题。本论文选题依托国家重点基础研究发展计划项目“黄土重大灾害及灾害链的发生、演化机制与防控理论”,首先,基于大量的黄土地质灾害链实例调研,建立黄土地质灾害链的科学框架。其次,水源型黄土地质灾害链是黄土高原最常见的地质灾害链,因此以水作用(灌溉、降雨)→黄土湿陷→地面沉降→黄土地裂缝→黄土塌陷→崩塌滑坡→黄土泥流为切入线索,以文献收集-野外调研与监测-土工试验-模型试验-数值模拟-数据分析-机理探索为研究方法,对黄土地质灾害链生演化特征及转化机制进行了研究,主要研究结果如下:(1)黄土地质灾害链演化过程伴随着三过程四阶段五状态。三过程指黄土结构面的扩张、分离、解体。四阶段指孕灾阶段、激发阶段、成灾阶段、衰退阶段。五状态指连续固体、变形体、破碎体、散体、流体。(2)分别从因果关系、成因、灾变机制上对黄土地质灾害链进行了分类。从因果关系上可以分为伴生黄土地质灾害链,派生黄土地质灾害链。从成因上可以分为内动力黄土地质灾害链、外动力黄土地质灾害链、人为黄土地质灾害链、复杂动力黄土地质灾害链。从灾变机制上可以分为水源型黄土地质灾害链,力-水源型黄土地质灾害链、震源型黄土地质灾害链。(3)连续固体→变形体可以概述为四个过程:1.水沿结构面入渗阶段;2.水-结构面作用阶段;3.结构面松动阶段;4.湿陷沉降阶段。(4)变形体→破碎体可以概括为两个过程:1.水-结构面作用下形成黄土地裂缝、黄土洞穴等灾害过程;2.坡体整体变形过程。第一个过程经历三个阶段:(1)填充物冲刷阶段;(2)黄土地裂缝形成阶段;(3)黄土洞穴形成阶段。第二个过程中坡体变形分布情况分为三个区:湿陷拉裂区、压裂区、剪切破坏区。(5)破碎体→散体可以概括为两个过程:1.黄土崩滑启动脱离边坡母体的过程;2.土体脱离斜坡母体后形成散体过程及散体的运动过程。在转化过程中散体在运动过程中伴随有常见的四大特点:1.结构面放大效应;2.双液化效应;3.散体与基底相互作用效应—逆冲推覆现象;4.多级次滑动。进而导致散体形成六种类型:拉裂破坏型、反倾破坏型、直立错落型、高位抛出型、错落平铺型、基底剪出型。(6)根据黄土地质灾害链的时效性,将散体→流体过程的宏观链生模式分为两种:直接转化型、间接转化型。地质条件、物源条件、水力条件、土体条件四大因素共同控制着散体向流体转化,在转化过程中其运动特征主要表现为四大特点:1.流动距离远;2.流动速度大;3.铲刮效应和加积效应;4.放大效应。(7)散体→流体外在灾种表现实质是黄土滑坡转化泥流。通过模型试验得出:黄土滑坡转化泥流的关键是高孔隙水压力能否的持续保持。散体→流体是库伦失稳和液化两种破坏形式共存,坡度和视摩擦角共同影响着堆积体的稳定性,视摩擦角同时影响着其破坏形式,直接导致堆积体从库伦失稳转化为任意失稳状态。而坡度则影响着滑坡转化泥流的规模和程度。由坡面冲刷型为主导逐渐转化为深部液化型泥流占主导。
顾薛青[8](2020)在《高铁穿越巨型溶洞回填处置与沉降控制技术研究》文中研究指明随着我国经济的快速发展,高速铁路网不断向西南部山区扩张,我国西南部山区多为岩溶地质,环境条件极其复杂,长大隧道的修建不可避免会穿越各种规模的溶洞,建设难度大。黔张常铁路高山隧道巨型溶洞首次采用“加工洞砟回填+上部注浆”的处置方案,处置后洞内形成超厚回填体,沉降问题显着。本文基于此工程,对溶洞处置前的方案比选及处置后的超厚回填体沉降及其控制技术进行系统研究,该研究为今后类似地区和条件下的岩溶隧道工程提供可靠经验和科学指导,对于解决隧道穿越巨型溶洞的重大工程难题具有重要的技术价值和经济意义。研究内容如下:1.评估了高山隧道巨型溶洞风险,根据评估结果和溶洞特点提出了11种溶洞处置方案;采用层次分析法建立溶洞回填处置方案比选模型,综合考虑多种因素得出“加工洞砟回填+上部注浆加固”处置方案为最优方案;提出了方案实施过程中的安全防护措施及溶洞影响区隧道衬砌结构优化措施;2.通过分析沉降监测资料和数值计算结果得出:(1)超厚填筑体沉降发展规律受施工荷载影响较大,且与施工荷载位置存在较大相关度,施工期沉降量占总沉降量的90%以上;(2)填筑体沉降主要由未注浆洞砟层和浅部堆积体压缩变形产生,两者的压缩变形量约占总变形量的65%;(3)填筑体纵向差异沉降随着施工荷载的增大而变大,表现为线路中心范围沉降最大,线路两端沉降最小,且由于纵向截面上洞砟填筑厚度不一,小里程端沉降略大;(4)由于溶洞侧壁的约束作用,近溶洞侧壁填筑体沉降较大。3.基于实测数据,采用多种预测方法对填筑体沉降进行预测分析,得出指数曲线模型对沉降发展态势预测精度最高,预测工后剩余沉降满足规范要求。提出了一种考虑注浆加固作用的双指数沉降预测模型,可良好的预测注浆处理的回填体沉降发展规律。4.基于溶洞回填处置工程实践总结并提出多种沉降控制技术,施工期可采用分层压实、注浆加固和预压加固等技术控制填筑体沉降;工后可采用隧道预留净空、路基板底注浆或路基板结构调整等技术治理板底脱空、沉降超限或不均匀沉降问题。5.详细阐述上部洞砟回填体注浆加固设计和缺陷原因分析,发现周边止浆墙成型差是造成缺陷的最主要原因;提出了相应的处理措施使注浆效果达到设计要求;
胡彦博[9](2020)在《深部开采底板破裂分布动态演化规律及突水危险性评价》文中指出在全国煤炭资源开发布局调整阶段,为了保证国家煤炭供给安全,东部矿区仍需保持20年左右的稳产期,许多矿井进入深部开采不可避免。围绕深部煤层开采底板突水通道动态形成过程机理、水害评价防治的科学技术问题,以华北型煤田东缘代表矿井为例,采用野外调研、理论分析、原位测试、室内试验、数值模拟等多种方法,按照华北煤田东缘矿区的赋煤地质结构特征→深部煤层开采底板变形破坏的动态监测方法→深部煤层开采底板岩层变形破坏的时空演化特征和突水模式→深部煤层开采底板破坏深度预测方法和开采底板突水危险性评价方法→深部煤层开采底板水害治理模式和治理效果序列验证评价方法的思路开展研究。主要成果如下:(1)提出了利用布里渊光时域反射技术(BOTDR)对深部煤层开采底板变形破坏的动态监测方法。根据研究表明BOTDR系统监测的动态变形量及应变分布状态与煤层底板岩层应力应变特征具有一致性,是有效监测煤层底板岩层变形破坏的新方案。BOTDR系统对煤层底板岩层监测显示,在采动过程中煤层底板岩层从上向下是呈现压-拉-压的应变趋势;同时获得了有效的煤层底板岩层的最大破坏深度,为深部煤层开采底板破坏深度的精准预测研究提供了有效的原位测试数据。(2)揭示了深部煤层开采完整底板破坏的时空演化特征:a.采前高应力区超前影响范围大约在煤壁前方38 m附近;b.开采底板岩层第一破断点的位置在采煤工作面煤壁前方29.07 m,煤层下方垂距9.24 m处,煤层底板破坏是从脆性岩层开始破断;c.开采底板破断发展趋势是从第一破断点首先向上发展破断,然后再同步向下破断。d.煤层开采底板破断的最大深度处于采前高应力区内,并且最大破断深度在采前高应力区内的峰值应力传播线附近(一般情况下)。根据煤层开采底板破坏的时空演化特征,对比分析了完整底板和含断层底板两种条件下煤层开采底板岩层破坏特点;同时对煤层开采底板进行横向分区,区域名称依次为原岩应力平衡区、采前高应力区、采后应力释放区、采后应力再平衡区。(3)利用BP神经网络、煤层开采底板应力螺旋线解析、气囊-溶液测漏法、经验公式法、多因素回归及分布式光纤实测等方法进行研究分析,得到了对深部煤层开采底板破坏深度进行有效的预测模型及方法;研究表明,多因素回归中模型III预测值更接近分布式光纤监测和气囊-溶液测漏法等实测数据,预测误差较小的预测方法依次为新的数学理论模型解析法和BP神经网络预测模型。(4)利用层次分析法、熵权法、地理信息系统等手段结合深部煤层开采破坏后有效隔水层厚度和其他多种影响底板突水的因素,对深度煤层开采底板突水危险性进行综合评价研究,得到了层次分析和熵权法(AHP-EWM)综合算法评价模型和基于改进型层次分析脆弱性指数(IAHP-VI)法两种深部煤层开采底板突水危险性评价模型,两者都具有一定的实用价值,在实际运用过程中可以根据研究区的实际情况择优选其一,也可以根据两种模型的预测结果取并集,能够进一步提高评价安全程度。(5)基于华北型煤田东缘矿区深部煤层开采底板突水通道的形成机理和突水模式,提出了“充水含水层和导水构造协同超前块段治理”模式并进行了定义。在现有的深部煤层开采水害的治理技术上,根据注浆改造目的层的构造、区域地应力、原岩水动力场等因素对地面受控定向钻进顺层钻孔方位和钻孔展布间距的设定进行科学有效的优化研究。(6)提出了“深部煤层开采底板水害治理效果序列验证评价方法”,利用对改造目的层的渗透系数和透水率、煤层底板阻水能力、矿井电法检测、检查钻孔数据等结合GIS系统进行综合研究,建立了科学系统化的评价方法。(7)利用“充水含水层和导水构造协同超前块段治理”模式对华北型煤田东缘矿区深部煤层底板水害进行了治理,结果显示治理效果良好,研究矿区深部煤层工作面实现了安全回采。本论文研究成果可为华北型煤田东缘矿区下组煤开采底板水害防治提供参考。
秦聪聪[10](2020)在《孔庄煤矿瓦斯赋存构造控制特征及应用研究》文中研究指明煤与瓦斯突出是制约煤矿安全生产的最主要因素,煤与瓦斯突出机理复杂,影响因素众多,目前仍不能准确预测。而发生煤与瓦斯突出最重要的前提条件就是煤体中存在大量的瓦斯。我国大部分矿区煤层的瓦斯含量普遍较高,其中深部煤层的瓦斯含量更高,而在项目进展过程中经现场测定发现,大屯矿区孔庄煤矿深部煤层的瓦斯含量与其相邻的淮北矿区深部煤层相比相对较低。本文结合孔庄煤矿的区域地质构造特征、煤系地层沉积演化特征、煤层气成藏特征以及瓦斯赋存规律对其瓦斯地质情况进行分析。在地质构造演化过程中,孔庄煤矿所在区域受到多期构造运动的共同作用,使其煤层瓦斯含量远低于相邻的淮北矿区。本文从地层差异性以及地层抬升与沉降的差异性方面入手对比分析了山东矿区、大屯矿区与淮北矿区的含气差异性。本文在Ⅳ3采区以及Ⅲ5采区共选取四个煤样,结合煤的工业分析、坚固性系数、瓦斯放散初速度、吸附解吸特征以及孔隙特征等多方面实验,得出孔庄煤矿煤样的f值分别为0.955、0.930、0.574、0.533,Δp分别为4.5mmHg、5.5mmHg、11.2mmHg、11.5mmHg,吸附常数a分别为16.8817m3/t、17.1490m3/t、17.9966m3/t、21.6372m3/t,BET比表面积最大为0.933m2/g,微孔孔容最大为0.02ml/g。实验数据表明Ⅲ5采区较之Ⅳ3采区突出危险倾向更大。由挥发分数据推算得出孔庄煤矿煤的镜质组平均最大反射率范围为0.660.84,煤种为气、肥煤和1/3焦煤,实验结果表明了孔庄煤矿整体上煤层生气能力较差、瓦斯吸附能力较差、瓦斯赋存空间较小、突出危险倾向较低。通过对多个采区不同标高的瓦斯压力/含量、瓦斯涌出量等原始数据的汇总分析,并结合现场实测数据,采用多元线性回归方程对孔庄煤矿的瓦斯含量以及瓦斯涌出量进行预测,并绘制相应的等值线图,同时对瓦斯风化带进行划分。通过理论预测值与实际测量值的对比分析,结果表明Ⅲ5采区存在瓦斯赋存异常区域,呈现出“高压力、低含量”的特点。结合孔庄煤矿Ⅲ5采区的瓦斯赋存规律以及现场实际情况,为了达到该采区瓦斯赋存异常区域得到有效控制的目的,制定了巷道掘进期间、采区石门揭煤期间和采煤工作面回采期间的局部治理措施,并辅以加强管理来保证矿井的安全高效生产。
二、通道基底局部沉降的治理(论文开题报告)
(1)论文研究背景及目的
此处内容要求:
首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。
写法范例:
本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。
(2)本文研究方法
调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。
观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。
实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。
文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。
实证研究法:依据现有的科学理论和实践的需要提出设计。
定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。
定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。
跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。
功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。
模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。
三、通道基底局部沉降的治理(论文提纲范文)
(1)淮南煤田奥陶系古岩溶成因机理及预测研究(论文提纲范文)
摘要 |
Abstract |
1 绪论 |
1.1 研究目的与意义 |
1.2 国内外研究现状及存在问题 |
1.2.1 古岩溶 |
1.2.2 古岩溶形成期次及其识别方法研究现状 |
1.2.3 古岩溶分布规律与控制因素研究现状 |
1.2.4 古岩溶识别与预测研究现状 |
1.2.5 华北煤田古岩溶研究现状 |
1.2.6 淮南煤田岩溶研究现状 |
1.2.7 存在的问题与不足 |
1.3 研究内容、方法与技术路线 |
1.3.1 研究内容 |
1.3.2 研究方法 |
1.3.3 技术路线 |
1.4 论文工作量 |
2 研究区地质及水文地质概况 |
2.1 研究区概况 |
2.2 地层与构造 |
2.2.1 地层 |
2.2.2 构造 |
2.3 含水层系统 |
2.3.1 新生界松散孔隙含(隔)水层系统 |
2.3.2 基岩裂隙-溶隙含水层系统 |
3 奥陶系古岩溶发育特征 |
3.1 奥陶系地层与岩性特征 |
3.1.1 地层厚度及结构 |
3.1.2 岩性特征 |
3.1.3 岩石矿物特征 |
3.2 奥陶系古岩溶发育类型及特征 |
3.2.1 溶孔 |
3.2.2 裂缝 |
3.2.3 溶洞 |
3.2.4 岩溶陷落柱 |
3.3 奥陶系古岩溶充填特征 |
3.3.1 充填物类型 |
3.3.2 充填特征 |
3.4 奥陶系古岩溶分布特征 |
3.4.1 平面分布特征 |
3.4.2 垂向分布特征 |
3.5 本章小结 |
4 奥陶系古岩溶形成期次确定 |
4.1 奥陶系古岩溶形成背景 |
4.1.1 奥陶系地层沉积背景 |
4.1.2 区域构造演化背景 |
4.1.3 岩浆活动 |
4.2 古岩溶地球化学特征分析 |
4.2.1 样品采集与测试 |
4.2.2 碳和氧同位素特征 |
4.2.3 微量元素特征 |
4.3 古岩溶充填物形成环境分析 |
4.3.1 盐度-温度-深度计算 |
4.3.2 形成环境分析 |
4.4 奥陶系古岩溶形成期次确定 |
4.5 本章小结 |
5 不同期次古岩溶形成环境与发育模式 |
5.1 沉积岩溶 |
5.1.1 地质背景 |
5.1.2 古气候 |
5.1.3 古水文 |
5.1.4 沉积岩溶发育模式 |
5.2 风化壳岩溶 |
5.2.1 地质背景 |
5.2.2 古气候 |
5.2.3 古地貌 |
5.2.4 古水文 |
5.2.5 风化壳岩溶发育模式 |
5.3 压释水岩溶 |
5.3.1 地质背景 |
5.3.2 古水文地质条件 |
5.3.3 压释水岩溶发育模式 |
5.4 热液岩溶 |
5.4.1 构造运动 |
5.4.2 岩浆活动 |
5.4.3 热液岩溶发育模式 |
5.5 混合岩溶 |
5.5.1 地质背景 |
5.5.2 古气候 |
5.5.3 古地貌 |
5.5.4 古水文 |
5.5.5 混合岩溶发育模式 |
5.6 奥陶系古岩溶演化模式 |
5.7 本章小结 |
6 奥陶系古岩溶发育控制因素 |
6.1 地层岩性与结构 |
6.1.1 碳酸盐岩岩性 |
6.1.2 岩层结构 |
6.2 侵蚀性流体 |
6.2.1 大气淡水 |
6.2.2 地层压释水 |
6.2.3 热液流体 |
6.2.4 混合流体 |
6.3 断裂构造 |
6.3.1 构造分期 |
6.3.2 古构造应力场数值模拟 |
6.3.3 模拟结果分析 |
6.3.4 多期构造运动对古岩溶发育的控制作用 |
6.4 古地貌与古水文 |
6.4.1 奥陶系风化壳古地貌与古水文 |
6.4.2 基岩风化面古地貌与古水文 |
6.5 岩浆活动 |
6.6 岩溶作用时间 |
6.7 本章小结 |
7 淮南煤田岩溶陷落柱形成机理探讨 |
7.1 基底溶洞形成过程分析 |
7.1.1 溶洞形成机理 |
7.1.2 溶洞形成过程数值模拟 |
7.2 顶板塌陷过程分析 |
7.2.1 顶板塌陷力学机制 |
7.2.2 顶板塌陷数值模拟 |
7.3 岩溶陷落柱形成机理探讨 |
7.4 本章小结 |
8 淮南煤田奥陶系古岩溶发育程度预测 |
8.1 预测方法 |
8.1.1 层次分析法 |
8.1.2 基于GIS的层次分析法 |
8.2 预测模型建立 |
8.2.1 评价指标体系建立 |
8.2.2 评价指标权重确定 |
8.2.3 评价指标归一化处理 |
8.2.4 综合得分模型建立 |
8.3 预测结果分析 |
8.4 结果验证 |
8.5 本章小结 |
9 结论与展望 |
9.1 结论 |
9.2 主要创新点 |
9.3 展望 |
参考文献 |
致谢 |
作者简介及读研期间主要科研成果 |
(2)瓦斯生运聚散的构造动力学过程及数值模拟研究 ——以阳泉矿区为例(论文提纲范文)
致谢 |
摘要 |
abstract |
1 绪论 |
1.1 选题依据及意义 |
1.2 研究现状及存在问题 |
1.3 研究内容及技术路线 |
1.4 创新点 |
1.5 论文工作量 |
2 研究区构造特征及演化 |
2.1 区域地质背景 |
2.2 区域构造变形特征及岩浆活动 |
2.3 阳泉矿区构造变形特征 |
2.4 显微变形特征及应力-应变环境 |
2.5 小结 |
3 煤层发育的构造控制 |
3.1 煤层发育特征 |
3.2 煤层形成与赋存的构造控制 |
3.3 煤变质的构造控制 |
3.4 煤变形的构造控制 |
3.5 小结 |
4 构造煤孔-裂隙结构特征及瓦斯吸附特性 |
4.1 构造煤裂隙结构特征 |
4.2 构造煤孔隙结构特征 |
4.3 构造煤瓦斯吸附特性 |
4.4 小结 |
5 瓦斯生运聚散演化模拟及其构造控制 |
5.1 埋藏史 |
5.2 热成熟史 |
5.3 瓦斯演化过程模拟 |
5.4 瓦斯生运聚散演化的构造控制 |
5.5 小结 |
6 结论 |
参考文献 |
作者简历 |
学位论文数据集 |
(3)迎泽大街下穿太原站施工沉降控制关键技术研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 研究背景及意义 |
1.2 下穿工程国内外研究现状 |
1.2.1 下穿工程对地层位移的研究现状 |
1.2.2 下穿工程对既有结构沉降的研究现状 |
1.2.3 既有建筑安全控制的研究现状 |
1.3 研究内容与技术路线 |
第2章 迎泽大街下穿太原站工程风险及沉降控制分析 |
2.1 迎泽大街下穿太原站工程设计总体思路分析 |
2.1.1 下穿工程概况 |
2.1.2 下穿工程交通量预测及投资估算 |
2.1.3 下穿工程通道总体布置思路分析 |
2.1.4 下穿工程通道线路布置思路分析 |
2.1.5 下穿工程车通道主体结构形式优化分析 |
2.1.6 下穿工程主要技术控制标准分析 |
2.1.7 下穿工程总体建设规模分析 |
2.2 下穿工程建设条件分析研究 |
2.2.1 下穿工程气象条件 |
2.2.2 下穿工程地质条件分析 |
2.2.3 下穿工程水文条件分析 |
2.2.4 下穿工程场地地基土湿陷性及不良地质作用分析 |
2.2.5 下穿工程场地地震效应与稳定性分析 |
2.3 下穿工程中既有建(构)筑物现状分析研究 |
2.3.1 下穿工程中运行铁路现状分析 |
2.3.2 下穿工程中无柱雨棚基础现状分析 |
2.3.3 下穿工程中行包地道现状分析 |
2.3.4 下穿工程中站场排水暗涵现状分析 |
2.3.5 下穿工程中接触网通信及管道等现状分析 |
2.3.6 下穿工程中车站站台及站场挡墙现状分析 |
2.4 下穿工程风险及施工沉降控制技术难点分析 |
2.4.1 下穿工程施工风险分析 |
2.4.2 下穿工程施工沉降控制技术难点分析 |
2.5 本章小结 |
第3章 迎泽大街下穿太原站工程沉降模拟分析研究 |
3.1 下穿工程沉降影响总体分析 |
3.1.1 基于太原站枢纽特殊性对下穿工程沉降影响分析 |
3.1.2 地下障碍物对下穿工程沉降的影响 |
3.1.3 施工中管线迁改对下穿工程沉降的影响 |
3.2 下穿工程站内轨道及道床沉降规律分析 |
3.2.1 轨道及道床变形控制标准 |
3.2.2 轨道及道床沉降模拟计算分析 |
3.2.3 基于Peck公式轨道及道床沉降计算分析 |
3.3 下穿工程站内雨棚柱沉降分析 |
3.4 下穿工程站场行包地道沉降分析 |
3.5 下穿工程车站排水暗涵与站台墙沉降分析 |
3.5.1 排水暗涵沉降分析 |
3.5.2 站台挡墙沉降分析 |
3.6 本章小结 |
第4章 迎泽大街下穿太原站工程沉降控制关键技术研究 |
4.1 既有铁路轨道及道床加固技术 |
4.1.1 线路扣轨加固技术 |
4.1.2 轨道路基注浆加固技术 |
4.1.3 管棚加固技术 |
4.2 顶管施工过程中既有建(构)筑物沉降控制技术 |
4.2.1 顶管施工过程中既有铁路沉降控制技术 |
4.2.2 顶管施工过程中无柱雨棚基础等构筑物沉降控制技术 |
4.2.3 顶管施工过程中行包通道沉降控制技术 |
4.2.4 顶管施工过程中各种管线沉降控制技术 |
4.3 明挖段施工沉降控制技术 |
4.3.1 明挖段施工概述 |
4.3.2 明挖段施工沉降控制整体技术思路 |
4.3.3 明挖段施工沉降控制技术工艺流程 |
4.4 管幕施工中沉降控制关键技术 |
4.4.1 新管幕法施工工艺研究 |
4.4.2 顶管机的选用计算及分析 |
4.4.3 钢管的选用技术分析 |
4.4.4 钢管的顶进顺序分析 |
4.4.5 顶管进出洞控制技术 |
4.4.6 顶管机掘进控制综合技术分析研究 |
4.5 下穿工程施工沉降应急技术 |
4.5.1 下穿工程建(构)筑物沉降变形应急技术 |
4.5.2 下穿工程地面沉降应急技术 |
4.6 本章小结 |
第5章 迎泽大街下穿太原站工程沉降监测技术分析研究 |
5.1 下穿工程沉降监测内容及控制指标 |
5.1.1 施工中地表沉降监测内容及控制指标 |
5.1.2 站台及雨棚等周围建(构)筑物沉降监测内容及控制指标 |
5.2 下穿工程沉降监测数据分析研究 |
5.2.1 轨道沉降监测数据分析研究 |
5.2.2 站台沉降监测数据分析研究 |
5.2.3 无柱雨棚沉降监测分析研究 |
5.3 本章小结 |
第6章 结论和展望 |
6.1 结论 |
6.2 展望 |
参考文献 |
附录 A 站台下穿段标准限界表 |
附录 B 轨道1~10 沉降监测图 |
附录 C 站台沉降监测表(5 站台) |
附录 D 站台限界对比图 |
附录 E 无柱雨棚柱限界对比图 |
致谢 |
(4)考虑土—结构相互作用的煤矿采动对RC框架结构模型抗震性能影响与分析(论文提纲范文)
致谢 |
摘要 |
abstract |
变量注释表 |
1 绪论 |
1.1 研究背景及意义 |
1.1.1 研究背景 |
1.1.2 研究意义 |
1.2 煤矿采动灾害对建筑物损害研究现状 |
1.2.1 采动灾害下地基-基础-上部结构相互作用 |
1.2.2 采动灾害对地表扰动研究进展 |
1.2.3 建筑物抗采动灾害防护措施研究进展 |
1.2.4 采动灾害对建筑物的影响 |
1.3 主要存在的问题 |
1.4 主要研究内容 |
1.5 技术路线 |
2 采动影响下振动台试验设计与模型制作 |
2.1 引言 |
2.2 相似理论 |
2.2.1 Buckingham定理 |
2.2.2 一致相似率 |
2.3 模型设计 |
2.3.1 原型简介 |
2.3.2 模型构件配筋计算 |
2.3.3 模型材料 |
2.3.4 缩尺模型可控相似常数 |
2.4 结构模型相似关系 |
2.4.1 模型构件自重相似计算 |
2.4.2 非结构构件及活载相似计算 |
2.4.3 物理量相似计算 |
2.5 模型主体及其他配件设计 |
2.5.1 模型主体设计 |
2.5.2 其他配件设计 |
2.5.3 模型配重设计 |
2.6 模型吊装上振动台 |
2.6.1 模型上振动台前的准备工作 |
2.6.2 试验模型上振动台及后续工作 |
2.7 本章小结 |
3 采动影响下建筑结构振动台试验研究 |
3.1 研究目的与内容 |
3.1.1 试验研究目的 |
3.1.2 试验研究内容 |
3.2 数据采集与加载方案 |
3.2.1 测点布置及采集系统 |
3.2.2 试验用地震波 |
3.2.3 地震波输入顺序及加载工况 |
3.2.4 采动灾害模拟试验台设计 |
3.3 模型动力特性分析 |
3.4 模型动力响应分析 |
3.4.1 数据处理方法研究 |
3.4.2 加速度反应分析 |
3.4.3 层间变形分析 |
3.4.4 能量耗散分析 |
3.4.5 应变响应分析 |
3.4.6 试验模型宏观破坏分析 |
3.5 动力破坏试验研究 |
3.6 机理分析 |
3.7 本章小结 |
4 采动影响下建筑结构数值模拟分析 |
4.1 引言 |
4.2 数值模拟理论 |
4.2.1 构件模型及材料本构关系 |
4.2.2 接触控制 |
4.2.3 网格划分 |
4.2.4 有限元模型的建立 |
4.3 采动灾害下建筑物损害分析 |
4.3.1 建筑物单向不均匀沉降 |
4.3.2 建筑物双向不均匀沉降 |
4.3.3 建筑物破坏损害分析 |
4.4 仿真分析与试验结果对比 |
4.4.1 结构动力特性 |
4.4.2 位移时程响应 |
4.4.3 动力破坏形态对比分析 |
4.5 本章小结 |
5 土-结构相互作用的理论分析 |
5.1 引言 |
5.2 土-结构相互作用机制 |
5.2.1 运动相互作用 |
5.2.2 惯性相互作用 |
5.3 土-结构相互作用简化理论分析模型 |
5.3.1 质点系模型 |
5.3.2 三维实体模型 |
5.3.3 子结构分析模型 |
5.3.4 混合模型 |
5.4 土-结构相互作用对结构的影响 |
5.4.1 结构体系动力特性影响 |
5.4.2 对结构地震反应的影响 |
5.4.3 对建筑物地基运动的影响 |
5.5 考虑土-结构相互作用的建筑物系统运动方程 |
5.6 本章小结 |
6 土-结构相互作用的采动影响下结构抗震性能研究 |
6.1 引言 |
6.2 考虑土-结构相互作用的有限元分析参数 |
6.2.1 土体动力本构模型 |
6.2.2 土体计算范围 |
6.2.3 地基土体与上部结构的连接 |
6.2.4 土体边界条件 |
6.3 煤矿采动影响下结构抗震性能分析 |
6.3.1 模态分析 |
6.3.2 加速度响应分析 |
6.3.3 顶点位移响应分析 |
6.3.4 层间变形分析 |
6.3.5 结构楼层剪力分析 |
6.4 土-结构相互作用的采动影响下结构倒塌破坏研究 |
6.4.1 土层参数 |
6.4.2 刚性地基下结构倒塌破坏分析 |
6.4.3 硬土地基下结构倒塌破坏分析 |
6.4.4 软土地基下结构倒塌破坏分析 |
6.5 本章小结 |
7 结论、创新点及展望 |
7.1 主要结论 |
7.2 创新点 |
7.3 研究展望 |
参考文献 |
查新结论 |
作者简历 |
学位论文数据集 |
(5)红山隧道仰拱变形机理及控制措施研究(论文提纲范文)
致谢 |
摘要 |
abstract |
变量注释表 |
1 绪论 |
1.1 选题背景及研究意义 |
1.2 国内外研究现状 |
1.3 存在的问题 |
1.4 研究内容 |
1.5 研究方法 |
1.6 技术路线 |
2 工程背景 |
2.1 工程概况 |
2.2 工程地质 |
2.3 隧道基底变形分析 |
2.4 红山隧道仰拱补勘 |
2.5 仰拱隆起变形影响因素分析 |
2.6 本章小结 |
3 仰拱变形机理及试验研究 |
3.1 仰拱变形机理研究 |
3.2 试样制备 |
3.3 凝灰质砂岩成分分析 |
3.4 含水率试验 |
3.5 凝灰质砂岩不同含水状态下三轴压缩试验 |
3.6 本章小结 |
4 红山隧道仰拱变形数值模拟研究 |
4.1 软件介绍 |
4.2 数值模型建立 |
4.3 隧道开挖支护过程模拟结果 |
4.4 隧道基底疏松层围岩不同劣化程度模拟结果 |
4.5 隧道基底不同疏松层厚度模拟结果 |
4.6 锚杆优化数值模拟 |
4.7 隧道基底治理数值模拟结果 |
4.8 本章小结 |
5 仰拱变形治理措施与效果分析 |
5.1 整治方案 |
5.2 监测方案 |
5.3 监测数据结果分析 |
5.4 监测数据回归分析 |
5.5 模拟结果与测量结果对比 |
5.6 本章小结 |
6 结论与展望 |
6.1 主要结论 |
6.2 展望 |
参考文献 |
作者简历 |
学位论文数据集 |
(6)TRD墙桩一体防渗与支护机理研究及应用(论文提纲范文)
摘要 |
Abstract |
第一章 绪论 |
1.1 研究背景及意义 |
1.1.1 研究背景 |
1.1.2 工法简介 |
1.1.3 研究意义 |
1.2 TRD工法 |
1.2.1 工法原理 |
1.2.2 工法优缺点 |
1.2.3 主要设计参数和标准 |
1.2.4 TRD工法用途 |
1.3 国内外研究现状 |
1.3.1 TRD质量影响因素研究现状 |
1.3.2 TRD抗渗性研究现状 |
1.3.3 TRD支护机理研究 |
1.3.4 TRD成墙稳定性研究 |
1.4 目前研究存在的主要问题 |
1.5 主要研究内容、技术路线与创新点 |
1.5.1 主要研究内容 |
1.5.2 技术路线 |
1.5.3 创新点 |
第二章 影响TRD成墙质量的因素与机制 |
2.1 试验方案设计 |
2.1.1 试验研究内容 |
2.1.2 试验材料 |
2.1.3 试块制作与养护 |
2.2 强度影响因素研究 |
2.2.1 水泥参量影响结果分析 |
2.2.2 综合含水率影响结果分析 |
2.2.3 龄期影响结果分析 |
2.3 渗透系数影响因素研究 |
2.3.1 水泥参量影响结果分析 |
2.3.2 综合含水率影响结果分析 |
2.3.3 龄期影响结果分析 |
2.4 其他影响因素 |
2.4.1 地下水 |
2.4.2 原位土腐殖质和pH值 |
2.4.3 水泥土养护温度 |
2.5 提高墙体质量方法 |
2.5.1 地质勘探 |
2.5.2 水泥参量 |
2.5.3 不良地质条件 |
2.5.4 技术经验交流 |
2.6 本章小结 |
第三章 TRD混合模型试验与抗渗性分析 |
3.1 TRD混合过程分析 |
3.1.1 混合参数 |
3.1.2 砂层参数 |
3.2 模型试验系统 |
3.2.1 模型试验装置 |
3.2.2 相似度计算 |
3.2.3 模型试验材料 |
3.3 现场试验验证 |
3.3.1 现场试验概况 |
3.3.2 试验结果对比 |
3.4 TRD混合模型试验 |
3.4.1 混合参数 |
3.4.2 砂层参数 |
3.4.3 试验结果 |
3.4.4 混合均匀评价 |
3.5 TRD抗渗性能数值模拟研究 |
3.5.1 差值函数描述混合均匀度 |
3.5.2 计算模型与参数 |
3.5.3 落底式TRD |
3.5.4 悬挂式TRD |
3.6 本章小结 |
第四章 TRD墙桩一体支护机理研究 |
4.1 型钢水泥土受力计算方法 |
4.1.1 数值模拟法 |
4.1.2 实验法 |
4.1.3 能量法 |
4.1.4 MVSS综合刚度法 |
4.2 墙桩一体数学模型 |
4.2.1 模型建立 |
4.2.2 变形控制标准 |
4.3 关键参数计算 |
4.3.1 无冠梁基坑 |
4.3.2 有冠梁基坑 |
4.3.3 算例 |
4.4 墙桩一体协调变形机制 |
4.4.1 水泥士变形 |
4.4.2 型钢承载力验算 |
4.5 型钢回收 |
4.5.1 H型钢回收机理 |
4.5.2 影响型钢回收因素 |
4.5.3 型钢推出试验 |
4.6 现场试验 |
4.6.1 试验地点概况 |
4.6.2 水文地质 |
4.6.3 试验内容 |
4.6.4 试验结果 |
4.7 本章小结 |
第五章 TRD施工槽壁稳定性研究 |
5.1 研究方法 |
5.2 施工稳定性 |
5.2.1 TRD槽壁安全系数计算 |
5.2.2 考虑泥浆屈服强度的槽壁安全系数 |
5.2.3 考虑上覆荷载的槽壁安全系数 |
5.2.4 算例 |
5.3 基地稳定性 |
5.3.1 基地隆起 |
5.3.2 基底抗涌砂稳定 |
5.4 本章小结 |
第六章 工程实践应用 |
6.1 依托工程概况 |
6.1.1 车站概况 |
6.1.2 水文地质条件 |
6.1.3 TRD主机 |
6.1.4 工程治理难点 |
6.2 TRD设计 |
6.2.1 切削搅拌参数 |
6.2.2 墙体参数 |
6.2.3 槽壁安全系数计算 |
6.2.4 施工材料 |
6.3 TRD施工 |
6.4 TRD质量检测 |
6.4.1 抗渗性检测 |
6.4.2 芯样强度检测 |
6.4.3 电磁波钻孔雷达检测 |
6.4.4 高清钻孔电视检测 |
6.5 本章小结 |
第七章 结论与展望 |
7.1 结论 |
7.2 进一步研究建议与展望 |
参考文献 |
致谢 |
发表论文 |
发表专利 |
参与项目 |
获得奖励 |
学位论文评阅及答辩情况表 |
(7)黄土地质灾害链链生演化特征及机制研究(论文提纲范文)
摘要 |
abstract |
第一章 绪论 |
1.1 选题背景及研究意义 |
1.2 国内外研究现状 |
1.2.1 灾害链研究 |
1.2.2 灾害链研究方法 |
1.2.3 地质灾害链研究现状 |
1.2.4 黄土地质灾害链转化机制研究 |
1.3 拟解决的关键科学问题和研究内容 |
1.3.1 拟解决的关键科学问题 |
1.3.2 研究思路和内容 |
1.3.3 创新点 |
第二章 黄土地质灾害链类型及特性 |
2.1 黄土地质灾害链分类 |
2.1.1 黄土高原主要地质灾害类型 |
2.1.2 黄土地质灾害链的分类 |
2.2 黄土地质灾害链的主要特征 |
2.2.1 复杂变化性 |
2.2.2 周期性和时效性 |
2.2.3 水作用明显 |
2.2.4 放大效应与衰减效应 |
2.3 黄土地质灾害链的演化过程 |
2.3.1 黄土地质灾害链的链式结构 |
2.3.2 常见的黄土地质灾害链的链式结构 |
2.3.3 结构面与黄土地质灾害链的互馈过程 |
2.3.4 黄土地质灾害链中土体状态变化过程 |
2.4 本章小结 |
第三章 连续固体→变形体演变特性及机理 |
3.1 黄土入渗规律 |
3.1.1 降雨入渗规律 |
3.1.2 灌溉入渗规律 |
3.1.3 降雨和灌溉入渗的比较 |
3.2 水-结构面相互作用下黄土湿陷沉降过程 |
3.2.1 试验所需设备和材料 |
3.2.2 试验方案 |
3.2.3 结果分析 |
3.3 连续固体→变形体链生演化过程 |
3.4 本章小结 |
第四章 变形体→破碎体演变特性及机理 |
4.1 水土互馈作用 |
4.1.1 冲蚀作用 |
4.1.2 静动水压力 |
4.1.3 崩解作用 |
4.1.4 溶滤潜蚀作用 |
4.1.5 湿陷作用 |
4.2 变形体→破碎体转化过程 |
4.2.1 水-结构面作用下边形成黄土地裂缝、黄土洞穴等灾害过程 |
4.2.2 坡体整体变形过程 |
4.3 变形体→破碎体灾种转化形式 |
4.4 本章小结 |
第五章 破碎体→散体演变特性及机理 |
5.1 破碎体→散体的特征和链生模式 |
5.1.1 控制因素 |
5.1.2 散体主要类型 |
5.2 链生演化过程 |
5.2.1 第一阶段:黄土崩滑启动脱离边坡母体过程 |
5.2.2 第二阶段:土体脱离斜坡母体后形成散体过程及散体运动过程 |
5.3 散体运动特征 |
5.3.1 结构面放大效应 |
5.3.2 双液化效应 |
5.3.3 散体与基底相互作用效应—逆冲推覆现象 |
5.3.4 多级次滑动 |
5.4 案例分析—泾阳南塬“5.26”黄土滑坡 |
5.4.1 滑坡特征 |
5.4.2 滑坡诱发因素 |
5.4.3 破碎体→散体链生演化过程 |
5.5 本章小结 |
第六章 散体→流体链生演变特性及机理 |
6.1 散体→流体的特征和链生模式 |
6.1.1 链生模式 |
6.1.2 控制因素 |
6.1.3 运动特征 |
6.2 散体→流体的转化机制 |
6.2.1 模型试验 |
6.2.2 黄土滑坡转化泥流机制 |
6.3 散体→流体典型案例分析 |
6.3.1 沟谷型黄土泥流—大沟滑坡-泥流 |
6.3.2 坡面型黄土泥流—陕西泾阳“3.8”蒋刘黄土滑坡-泥流 |
6.4 本章小结 |
第七章 结论和展望 |
7.1 结论 |
7.2 展望 |
参考文献 |
附录 A |
攻读学位期间取得的研究成果 |
致谢 |
(8)高铁穿越巨型溶洞回填处置与沉降控制技术研究(论文提纲范文)
摘要 |
ABSTRACT |
第1章 绪论 |
1.1 选题背景及意义 |
1.1.1 选题背景 |
1.1.2 研究意义 |
1.2 国内外研究现状 |
1.2.1 岩溶处置技术研究现状 |
1.2.2 填筑体沉降机理研究现状 |
1.2.3 填筑体沉降控制技术研究 |
1.3 研究内容与技术路线 |
1.3.1 研究内容 |
1.3.2 技术路线 |
第2章 巨型溶洞处置方案研究 |
2.1 工程概况 |
2.1.1 隧道概况 |
2.1.2 溶洞概况 |
2.1.3 溶洞风险评估 |
2.2 溶洞处置方案研究 |
2.2.1 改线避绕方法 |
2.2.2 搭桥跨越方法 |
2.2.3 回填处置方法 |
2.2.4 处置方法可行性分析 |
2.3 巨型溶洞回填处置方案比选 |
2.3.1 回填方案比选方法 |
2.3.2 回填方案比选因素分析 |
2.3.3 巨型溶洞回填方案比选 |
2.4 巨型溶洞安全防护措施 |
2.4.1 临时施工安全防护 |
2.4.2 顶板和侧壁永久安全防护 |
2.5 溶洞影响区衬砌结构优化措施 |
2.6 本章小节 |
第3章 巨型溶洞超厚填筑体沉降监测与数值模拟分析 |
3.1 超厚填筑体沉降监测方案 |
3.1.1 监测目的 |
3.1.2 监测方案设计 |
3.1.3 监测元件安装要点 |
3.2 超厚填筑体监测分析 |
3.2.1 表层沉降分析 |
3.2.2 分层沉降分析 |
3.3 基于实测数据的沉降预测分析 |
3.3.1 沉降预测方法 |
3.3.2 沉降预测分析 |
3.3.3 考虑注浆作用的双指数沉降预测模型 |
3.4 超厚填筑体数值模拟分析 |
3.4.1 模型建立 |
3.4.2 计算过程及初始地应力平衡 |
3.4.3 计算结果分析 |
3.4.4 数值模拟结果与实测结果比较分析 |
3.5 本章小结 |
第4章 超厚填筑体沉降控制技术研究 |
4.1 施工期超厚填筑体沉降控制技术 |
4.1.1 分层振动压实技术 |
4.1.2 注浆加固技术 |
4.1.3 预压加固技术 |
4.2 巨型溶洞洞砟回填体上部注浆加固设计 |
4.2.1 设计依据 |
4.2.2 设计内容 |
4.2.3 技术实施 |
4.2.4 注浆质量控制 |
4.2.5 注浆效果检验及分析 |
4.3 工后沉降控制技术 |
4.3.1 隧道预留净空设计 |
4.3.2 路基板底注浆控制技术 |
4.3.3 路基板结构调整技术 |
4.4 本章小节 |
第5章 结论与展望 |
5.1 结论 |
5.2 展望 |
参考文献 |
致谢 |
攻读硕士学位期间论文发表及科研情况 |
(9)深部开采底板破裂分布动态演化规律及突水危险性评价(论文提纲范文)
致谢 |
摘要 |
abstract |
变量注释表 |
1 绪论 |
1.1 研究背景及意义 |
1.2 国内外研究现状 |
1.3 研究内容及方法 |
1.4 技术路线 |
2 华北型煤田东缘区域地质及水文地质条件 |
2.1 区域赋煤构造及含水层 |
2.2 深部煤层开采底板突水水源水文地质特征 |
2.3 煤系基底奥陶系灰岩含水层水文地质特征 |
2.4 本章小结 |
3 深部开采底板变形破坏原位动态监测 |
3.1 分布式光纤动态监测底板采动变形破坏 |
3.2 对比分析光纤实测与传统解析和原位探查 |
3.3 本章小结 |
4 深部开采煤层底板破坏机理和突水模式研究 |
4.1 深部开采煤层底板破裂分布动态演化规律 |
4.2 深部煤层开采底板突水模式 |
4.3 本章小结 |
5 深部开采底板突水危险性非线性预测评价方法 |
5.1 深部煤层开采底板破坏深度预测 |
5.2 下组煤开采底板突水危险性评价研究及应用 |
5.3 本章小结 |
6 深部开采底板水害治理模式及关键技术 |
6.1 底板水害治理模式和效果评价方法 |
6.2 底板水害治理模式和治理效果评价的应用 |
6.3 本章小结 |
7 结论 |
7.1 主要结论 |
7.2 主要创新性成果 |
7.3 展望 |
参考文献 |
作者简历 |
学位论文数据集 |
(10)孔庄煤矿瓦斯赋存构造控制特征及应用研究(论文提纲范文)
致谢 |
摘要 |
abstract |
变量注释表 |
1 绪论 |
1.1 选题背景与研究意义 |
1.2 研究现状 |
1.3 主要研究内容与技术路线 |
2 区域地质构造演化特征及煤层气成藏特征 |
2.1 孔庄煤矿区域构造特征及煤系地层 |
2.2 孔庄煤矿煤层气成藏特征 |
2.3 山东矿区、大屯矿区与淮北矿区含气差异性 |
2.4 本章小结 |
3 孔庄煤矿储层物性分析及吸附解吸特征 |
3.1 煤样的采取与制备 |
3.2 煤的基本物性参数分析 |
3.3 煤样吸附解吸特征分析 |
3.4 煤样孔隙特征分析 |
3.5 本章小结 |
4 孔庄煤矿瓦斯赋存规律 |
4.1 矿井瓦斯赋存 |
4.2 矿井瓦斯涌出量预测 |
4.3 本章小结 |
5 防治煤与瓦斯突出的局部措施 |
5.1 瓦斯赋存异常区域划定及原因分析 |
5.2 局部治理措施 |
5.3 本章小结 |
6 主要结论及研究展望 |
6.1 主要结论 |
6.2 研究展望 |
参考文献 |
作者简历 |
学位论文数据集 |
四、通道基底局部沉降的治理(论文参考文献)
- [1]淮南煤田奥陶系古岩溶成因机理及预测研究[D]. 张海涛. 安徽理工大学, 2021
- [2]瓦斯生运聚散的构造动力学过程及数值模拟研究 ——以阳泉矿区为例[D]. 李凤丽. 中国矿业大学, 2021
- [3]迎泽大街下穿太原站施工沉降控制关键技术研究[D]. 王星辉. 太原理工大学, 2021(01)
- [4]考虑土—结构相互作用的煤矿采动对RC框架结构模型抗震性能影响与分析[D]. 白春. 辽宁工程技术大学, 2020(01)
- [5]红山隧道仰拱变形机理及控制措施研究[D]. 王浩. 辽宁工程技术大学, 2020(02)
- [6]TRD墙桩一体防渗与支护机理研究及应用[D]. 姜鹏. 山东大学, 2020(08)
- [7]黄土地质灾害链链生演化特征及机制研究[D]. 马鹏辉. 长安大学, 2020(06)
- [8]高铁穿越巨型溶洞回填处置与沉降控制技术研究[D]. 顾薛青. 山东建筑大学, 2020(12)
- [9]深部开采底板破裂分布动态演化规律及突水危险性评价[D]. 胡彦博. 中国矿业大学, 2020(01)
- [10]孔庄煤矿瓦斯赋存构造控制特征及应用研究[D]. 秦聪聪. 中国矿业大学, 2020(01)