埃达克质火成岩对陆壳增厚过程的指示——以青藏北部火山岩为例

埃达克质火成岩对陆壳增厚过程的指示——以青藏北部火山岩为例

一、Adakitic火成岩对大陆地壳增厚过程的指示:以青藏北部火山岩为例(论文文献综述)

孟元库,袁昊岐,魏友卿,张书凯,刘金庆[1](2022)在《藏南冈底斯岩浆带研究进展与展望》文中指出冈底斯岩浆岩带(以下简称冈底斯带)是新特提斯洋俯冲和印度—亚洲板块碰撞的产物,为典型的复合型大陆岩浆弧,是研究板块增生、大陆地壳生长再造和碰撞造山的天然实验室。大量研究揭示新特提斯洋主要经历了4个重要的演化时期:分别是早期俯冲(>152 Ma)、晚期俯冲(100~65 Ma)、主碰撞(55~40 Ma)和后碰撞伸展期(23 Ma至今)。前人对其开展了大量的工作,并取得了重要的认识和进展,然而关于新特提斯洋的形成和演化以及冈底斯带火成岩岩浆源区的属性、精细的成岩过程等方面仍然存在着激烈的争议。文章首先介绍了冈底斯带的研究历史和大地构造背景,对冈底斯带目前存在的主要科学问题和争议进行了初步梳理,从13个方面进行了论述和总结。初步的梳理给出的启示是:冈底斯带是一个典型的岩浆—构造—成矿—变形变质带,经历了长期、复杂和多阶段的演化过程,而不是简单地拼贴于古老拉萨地体之上的新生大陆岛弧体。主要认识包括:(1)冈底斯岛弧带是研究新特提斯洋俯冲最为理想的场所,记录了新特提斯洋演化的关键信息,是破解新特提斯洋板片初始俯冲时限和板片俯冲方式最佳的研究对象;(2)冈底斯带中不同时代的花岗岩基或岩株可能经历了一个多期次组装累积的过程,今后应运用晶粥体的模型去重新理解冈底斯带花岗质岩石的形成和动力学成岩过程;(3)冈底斯地区地幔的性质沿着走向表现出复杂性,具有地球化学上的不均一性;(4)冈底斯带的火成岩存在同位素上的倒转,这可能暗示冈底斯地区存在老的基底;(5)冈底斯岛弧带在构造上具有明显的掀斜性,表现出东段以下地壳组分为主,中西段以中上地壳组分为主,暗示了冈底斯带自新生代以来经历了一个不均衡的构造抬升和剥露过程;(6)冈底斯带的研究对象仍以火成岩为主,研究方法多限于传统的岩石学和放射性Sr-Nd-Hf同位素手段,而非传统的稳定性同位素(Mg-O-Li-B-Mo)的研究却鲜有报道,并且在研究内容上主要以岩石成因和地质年代学为主,而对火成岩侵位过程和成岩后的构造变形和抬升剥蚀等相关研究则相对薄弱;(7)目前,构造地质学手段在冈底斯带的研究中运用较少,常以岩浆演化来代替构造演化。最后,文章针对目前的研究现状,对冈底斯带未来的研究方向进行了展望。

朱毓[2](2021)在《扬子板块西缘新元古代花岗岩类岩浆成因及深部动力学意义》文中指出作为华南板块的重要组成部分,扬子板块西缘广泛发育有晚中元古代–新元古代花岗岩类与共生的镁铁质–超镁铁质岩石,这些岩石被认为是晚中元古代–新元古代时期罗迪尼亚(Rodinia)超大陆汇聚与裂解过程的产物,它们记录了该时期扬子西缘地幔属性、地壳增长与重熔以及壳幔相互作用的关键信息,从而成为探索Rodinia超大陆演化进程的重要载体。不同源区花岗岩类岩浆成因的研究对于揭示地壳温压环境及壳幔相互作用具有重要的意义。扬子西缘新元古代基性岩浆岩的地幔属性及构造意义已经被系统研究,然而,对于不同类型中酸性花岗岩类岩石成因与地质意义的系统研究仍有待加强。前人研究表明,扬子西缘新元古代存在俯冲大洋板片、交代地幔、新生镁铁质下地壳以及加厚下地壳来源的岩浆作用。那么,是否存在成熟地壳源区部分熔融的岩浆作用?此外,基于俯冲构造环境,扬子西缘新元古代存在俯冲流体与大洋板片熔体有关的地幔交代作用。那么,是否存在俯冲沉积物熔体有关的地幔交代作用?同时,扬子西缘新元古代俯冲背景下的构造转换进程如何?扬子西缘新元古代俯冲进程与地幔交代作用、地壳增长与重熔进程的协同演化关系如何?这些问题都亟待约束。基于以上考虑,本文选取扬子板块西缘新元古代四组典型的花岗岩类和岩石组合(包括水陆高Mg#闪长岩、宽裕-茨达过铝质花岗岩、大陆I型花岗闪长岩-花岗岩和攀枝花-盐边地区辉长闪长岩-埃达克花岗岩-A型花岗岩组合)为研究对象,进行系统的野外地质、岩相学、锆石U-Pb年代学、全岩主微量元素、全岩Sr-Nd同位素和锆石Lu-Hf同位素研究。结合前人对于区域地质的研究成果以及实验岩石学的结论,探究四组特征性的花岗岩类和岩石组合的岩浆成因机制,试图系统揭示扬子西缘新元古代不同深度层次(交代地幔源区-新生镁铁质下地壳源区-成熟大陆地壳源区)的岩浆作用,为扬子西缘新元古代俯冲流体与沉积物熔体有关的地幔交代作用以及成熟大陆地壳岩浆作用提供证据,并为扬子西缘新元古代俯冲背景及构造转换进程(从俯冲进程早–中期交代地幔岩浆上涌引发的地壳增厚到俯冲进程中–后期弧后扩张阶段引发的区域性地壳减薄)提供进一步约束。本文获得的主要认识包括以下几个方面:1.扬子西缘新元古代俯冲流体与沉积物熔体交代地幔岩浆作用:来自ca.850-835 Ma水陆高Mg#闪长岩的约束扬子西缘新元古代俯冲流体与板片熔体有关的地幔交代作用已经被报道,然而,对于俯冲沉积物熔体有关的地幔交代作用的研究较少。高Mg#闪长岩的岩浆成因能够为俯冲背景下的地幔交代作用提供至关重要的见解,因此,我们选取扬子西缘米易地区最新识别的新元古代水陆高Mg#闪长岩进行详细的研究,旨在揭示俯冲流体与俯冲沉积物熔体有关的地幔交代作用。锆石U-Pb年代学研究表明水陆高Mg#闪长岩形成于ca.850-835 Ma。它们属于准铝质钙碱性岩石,具有中等的Si O2(57.08 wt.%–61.12wt.%)含量和高的Mg O(3.36 wt.%–4.30 wt.%)含量以及Mg#(56–60)值。水陆高Mg#闪长岩具有低的全岩初始87Sr/86Sr比值(0.703406–0.704157)以及高且正的全岩εNd(t)(+3.3~+4.3)和锆石εHf(t)(+8.43~+13.6)值,指示它们来源于亏损的岩石圈地幔源区。它们具有富集的轻稀土元素和大离子亲石元素以及亏损的高场强元素特征,显示典型的弧岩浆属性。考虑到并不重要的地壳混染和Nd-Hf同位素的轻微解耦,水陆高Mg#闪长岩具有的高的Ba含量以及Rb/Y、Th/Ce、Th/Sm、Ba/La和Th/Yb比值说明,它们的地幔源区在部分熔融之前经历了俯冲流体与沉积物熔体有关的地幔交代作用。因此,我们认为水陆高Mg#闪长岩来源于俯冲流体与沉积物熔体交代地幔源区的部分熔融。结合之前对于俯冲流体与板片熔体有关的地幔交代作用的研究,我们提出,伴随着俯冲进程的持续,扬子西缘新元古代地幔源区逐渐经历了俯冲流体、沉积物熔体与板片熔体的交代作用。水陆高Mg#闪长岩的识别为扬子西缘新元古代时期俯冲沉积物熔体有关的交代地幔岩浆作用提供了具体的岩石地球化学证据。2.扬子西缘新元古代成熟大陆地壳的不平衡熔融:来自ca.840-835 Ma宽裕-茨达过铝质花岗岩的见解扬子西缘新元古代存在的交代地幔与新生镁铁质下地壳的部分熔融已经被广泛报道,但是,对于成熟大陆地壳物质重熔的详细研究仍然较为有限。过铝质花岗岩的形成能够为成熟大陆地壳的部分熔融提供重要的见解。因此,我们选取最新识别的扬子西缘新元古代宽裕-茨达过铝质花岗岩进行详细的锆石U-Pb-Hf同位素,全岩地球化学和Sr-Nd同位素研究,旨在揭示其详细的岩浆源区与成因机制,并进一步为扬子西缘新元古代成熟大陆地壳岩浆作用提供约束。LA-ICP-MS锆石U-Pb年龄显示宽裕-茨达过铝质花岗岩产生于ca.840-835 Ma。它们具有高的Si O2(66.88 wt.%–75.56wt.%)、K2O(4.61 wt.%–7.29 wt.%)、K2O/Na2O(1.44–3.25)和A/CNK(1.04–1.18)值。宽裕-茨达过铝质花岗岩显示富集的Rb、K、Th、U和Pb以及亏损的Nb、Ta、Sr和Ti,具有类似于中上地壳的微量元素配分模式。它们具有高的初始87Sr/86Sr比值(0.709893–0.721704)以及负的全岩εNd(t)(-5.1~-2.9)值,指示一个演化的地壳源区。此外,宽裕-茨达过铝质花岗岩具有变化的Ca O/Na2O(0.09–0.65)和Al2O3/Ti O2(25.3–88.4)比值,中等的Rb/Ba(1.68–3.86)和Rb/Sr(0.32–0.85)比值以及高的摩尔Al2O3/(Mg O+Fe OT)(2.04–5.23)和低的Ca O/(Mg O+Fe OT)(0.15–0.48)值,说明它们来源于不均一的变质沉积物源区(变泥质岩+变质杂砂岩)。考虑到缺乏壳幔岩浆混合的证据,它们不均一的锆石Hf同位素组分(εHf(t)=-7.75~+3.31)是由于不均一的变质沉积物源区的不平衡熔融进程导致的。结合区域地质背景,我们提出宽裕-茨达过铝质花岗岩代表扬子西缘新元古代俯冲进程早期阶段成熟大陆地壳物质的不平衡熔融作用。扬子西缘新元古代时期不仅经历了新生镁铁质下地壳的熔融,也发生了成熟大陆地壳物质的重熔。3.扬子西缘新元古代不同地壳层次的岩浆响应:来自ca.780 Ma大陆I型花岗闪长岩-花岗岩的证据I型花岗岩岩浆成因的深入研究能够为了解区域地壳增长与熔融进程提供窗口。本文选取扬子西缘新元古代大陆I型复式花岗闪长岩-花岗岩岩体进行详细的研究,旨在揭示不同地壳层次的岩浆响应,并进一步探讨复式花岗岩岩体的地球化学多样性。锆石U-Pb年代学研究表明大陆I型花岗闪长岩-花岗岩形成于ca.780 Ma。全岩地球化学特征显示大陆I型花岗闪长岩属于钠质钙碱性,准铝质到轻微过铝质岩石,具有中等的Si O2(60.88 wt.%–68.07 wt.%)含量和高的Na2O/K2O(2.27–3.65)比值以及变化的A/CNK(0.94–1.08)比值。它们具有明显正的全岩εNd(t)(+1.1~+2.3)和锆石εHf(t)(+2.16~+7.39)值,暗示来源于新生镁铁质下地壳源区的部分熔融。大陆I型花岗岩属于高钾钙碱性过铝质岩石。它们显示出负的全岩εNd(t)(-0.8~-0.6)和不均一的锆石εHf(t)(–4.65~+5.80)值。考虑到大陆I型花岗闪长岩与花岗岩的共生关系,大陆I型花岗岩主要来源于镁铁质下地壳熔体引发的浅部地壳源区变质沉积物的部分熔融。此外,大陆I型复式花岗岩体的地球化学多样性是由于源区的差异性与部分熔融温度的差别导致的。4.扬子西缘新元古代俯冲背景区域地壳增厚到减薄:来自ca.810-750 Ma辉长闪长岩-埃达克花岗岩-A型花岗岩的证据A型花岗岩紧随着埃达克花岗岩的出现能够为俯冲背景下区域性的地壳增厚到减薄进程提供独特的见解。本文选取扬子西缘攀枝花-盐边地区新元古代辉长闪长岩-埃达克花岗岩-A型花岗岩组合进行详细的锆石U-Pb-Hf同位素和全岩地球化学研究,旨在评估它们的岩石成因与深部动力学意义。大尖山辉长闪长岩形成于ca.810 Ma。它们属于钠质钙碱性岩石,具有低的Si O2(52.62 wt.%–53.87 wt.%),中等的Mg O(2.67wt.%–3.41 wt.%)以及高的Fe2O3T(7.18 wt.%–7.49 wt.%)和Ca O(5.68 wt.%–7.50 wt.%)含量。它们显示高的Th/Zr和Rb/Y比值以及低的Nb/Zr和Nb/Y比值,指示俯冲流体交代作用。结合它们正的全岩εNd(t)(+1.0~+1.5)和锆石εHf(t)(+3.66~+8.18)值,我们认为大尖山辉长闪长岩来源于俯冲流体交代地幔源区的部分熔融。大尖山埃达克花岗岩形成于ca.800 Ma。它们显示高的Si O2(74.08 wt.%–74.82 wt.%)、Na2O(4.76wt.%–5.60 wt.%)、Sr(335–395 ppm)含量和Sr/Y(38.9–54.3)比值以及低的Y(7.04–9.71ppm)和Yb(0.78–1.08 ppm)含量。它们低的Mg O(0.25 wt.%–0.30 wt.%)、Mg#(36–41)、Cr(2.94–3.59 ppm)和Ni(1.32–1.55 ppm)含量以及正的全岩εNd(t)(+0.5~+0.6)和锆石εHf(t)(+1.62~+8.07)值说明它们来源于加厚的新生镁铁质下地壳的部分熔融。攀枝花A型花岗岩形成于ca.750 Ma。它们显示极度高的Si O2(76.61 wt.%–77.14wt.%)和Na2O+K2O(8.55 wt.%–9.69 wt.%)含量以及10000*Ga/Al值(2.56–2.80)与分异指数(95–97)。它们具有负的全岩εNd(t)(–1.6~–1.2)和变化的锆石εHf(t)(–4.65~+5.80)值。地球化学特征表明攀枝花A2型花岗岩来源于低压环境下长英质地壳的部分熔融。结合区域地质背景,我们提出,ca.810 Ma的大尖山辉长闪长岩指示扬子西缘新元古代处于俯冲背景,广泛的早–中新元古代交代地幔来源的岩浆(>810 Ma)在上升侵位过程中加厚了镁铁质下地壳。Ca.800 Ma大尖山埃达克花岗岩到ca.750 Ma攀枝花A型花岗岩的出现代表扬子西缘俯冲背景下地壳增厚到减薄过程。基于上述四组扬子西缘新元古代典型花岗岩类与岩石组合的研究,我们系统揭示了扬子西缘新元古代不同深度层次的壳幔局部熔融作用(交代地幔源区–新生镁铁质下地壳源区–成熟大陆地壳源区),并进一步为扬子西缘新元古代俯冲背景提供了约束。基于俯冲背景,我们认为,扬子西缘新元古代地幔源区逐渐经历了俯冲流体、沉积物熔体和板片熔体有关的交代作用。此外,我们提出扬子西缘新元古代构造转换进程:扬子西缘早–中新元古代交代地幔来源的岩浆在上升形成镁铁质–超镁铁质侵入体的同时也加厚了下地壳,中–后期加厚下地壳来源的埃达克花岗岩到A型花岗岩的出现代表了扬子西缘俯冲进程的区域性地壳增厚到减薄过程,区域减薄环境的出现指示了俯冲进程后期的弧后扩张阶段。

罗泽彬[3](2021)在《长江中下游早白垩世岩浆岩元素地球化学和钙同位素研究》文中研究说明本论文聚焦长江中下游地区,以元素地球化学和Ca同位素作为研究方法,对研究区内的埃达克岩和A型花岗岩进行了研究。评估了在K-Ca同位素体系中,40K衰变所造成的放射性成因40Ca(R40Ca)的累积对稳定Ca同位素数据的影响,确立了一种简单有效的R40Ca校正的算法;采用加权平均法对大陆上地壳的Ca同位素组成进行了评估。探讨了Ca同位素在岩浆演化过程中的分馏机理;反演了长江中下游地区晚中生代的地质演化历史。在K/Ca较高和年龄较老的岩石中,由40K经过β-衰变形成的40Ca会大量累积,导致δ44/40Ca值变大,给数据解释带来困扰。本文基于双稀释剂法,通过优化计算参数和算法,可以准确地对R40Ca进行监控并进行扣除。研究结果表明,R40Ca在迭代计算中与样品真实的δ44/40Ca之间呈线性相关。因此,可以先通过衰变定律计算出R40Ca,进一步得到样品真实的δ44/40Ca。这种算法的优点是不需要进行更多的化学分离和质谱测定去获得δ44/42Ca值,进而计算出样品的δ44/40Ca。这种算法方便快捷,提高了效率。早白垩世的埃达克岩或埃达克质岩广泛分布于中国东部,例如:长江中下游,南郯庐断裂带,以及大别山造山带。然而,它们的成因仍然存在争议。本论文中,对安徽中部的管店岩体进行了详细的地质年代学和地球化学研究。它以前被认为是长江中下游北带的一部分,后来又被划分到南郯庐断裂带。管店岩体由石英二长岩构成,准铝质,属于高钾钙碱性系列。样品具有高Si O2(59.15-62.32%),Al2O3(14.51-15.39%),Sr(892-1184 ppm)含量,Sr/Y(56.74-86.32)比值,以及低Y(12.65-18.05 ppm)含量,这些地球化学特征类似于典型的埃达克质岩。管店岩体具有较高的K2O(2.88-3.86%)含量,Mg O(3.89-5.24%)含量和Mg#(55-60)值,亏损高场强元素(Nb,Ta和Ti),以及Ba,Pb和Sr正异常。LA-ICP-MS锆石U-Pb定年结果显示,锆石的加权平均年龄为129.2±0.7 Ma。基于原位锆石微量元素分析,计算得出锆石Ce4+/Ce3+=(6.97-145),(Eu/Eu*)N=(0.23-0.42)。相比于长江中下游和德兴铜矿含矿的埃达克质岩,管店岩体具有较低的氧逸度,这与该区域不含矿的事实一致。结合前人研究,我们提出:管店埃达克质岩岩体是由发生在早白垩世太平洋板块和伊泽奈崎板块的洋脊俯冲所诱发的拆沉下地壳的部分熔融所形成。在洋脊俯冲过程中,物理碰撞导致了加厚下地壳的拆沉,而热化学侵蚀引发了拆沉下地壳的部分熔融。A型花岗岩通常在伸展构造背景下出露,并在认识地球的地壳演化方面起着重要的作用。然而,目前A型花岗岩的成因仍然存在较大的分歧。本论文选择中国东部长江中下游地区出露的典型的A型花岗岩岩体作为研究对象,对其进行了高精度的Ca同位素测定。前人的研究表明这些岩体具有相似的形成年龄和均一的Sr、Nd和Hf同位素组成,表明它们来自相同的岩浆源区。本文的结果表明,这些A型花岗岩的δ44/40Ca从0.51‰变化到0.99‰,与Ca O、Sr、Ba以及Eu异常(Eu*)存在明显的负相关性。说明Ca同位素的分馏是由斜长石的分离结晶引起的。模拟结果表明,在大多数样品中约有70%的斜长石发生了分离结晶作用,这一结论与矿物学观察结果一致。演化程度最低的样品代表了岩浆的初始成分。因此,A型花岗岩中最低的δ44/40Ca(0.51‰)暗示存在一个具有轻Ca同位素组成的岩浆源区。结合前人研究,我们提出:长江中下游的A型花岗岩来自一个被俯冲沉积物交代的富集地幔源区。在强烈的伸展构造背景下,沿断裂侵入地壳形成A型花岗岩。岩浆演化过程中经历了斜长石的分离结晶作用以及轻微的同化混染作用。

惠博[4](2021)在《扬子西北缘碧口地块新元古代构造演化》文中研究指明碧口地块位处扬子板块西北缘,保存了丰富的新元古代岩浆活动、沉积地层和构造变形等记录,是探讨扬子板块新元古代构造演化的天然窗口。然而,对于碧口地块新元古代构造演化过程及动力学机制,目前仍缺乏明确的认识。基于此,本次博士论文选取碧口地块鱼洞子杂岩、碧口群变质火山岩系、横丹群碎屑沉积岩系、镁铁质-长英质深成岩体为主要研究对象,综合开展了野外地质、岩石学、年代学、地球化学等方面的研究工作,明确了碧口地块的构造亲缘性,梳理了碧口群变质火山岩的成因机制及构造属性,厘清了横丹群的沉积时限、源区特征及构造背景,阐明了碧口地块关键岩浆作用的形成时限、成因机制及动力学背景。通过系统总结区域地质资料,综合分析已发表研究成果,探讨了碧口地块新元古代构造演化过程及动力学机制。主要取得了以下几个方面的研究成果与认识:(1)碧口地块是扬子板块西北缘早前寒武纪构造单元,演化历史可以追溯至太古代–古元古代时期。碧口地块鱼洞子杂岩中奥长花岗质片麻岩属于典型的太古代TTG类岩石,具有亏损的锆石Hf同位素(εHf(t)=+2.1-+8.1)组成,源于新生镁铁质地壳的重熔作用,代表了~2.82 Ga改造新生地壳事件。角闪斜长片麻岩属于幔源岩浆序列,锆石Hf同位素(εHf(t)=-0.9-+3.9)组分整体亏损,代表了~2.69 Ga重要的地壳生长活动。花岗片麻岩组分类似于太古代TTG类岩石,整体富集的锆石Hf同位素(εHf(t)=-3.4-+1.5)组成,由太古代地壳物质发生部分熔融形成,继承了原岩的组分特征,代表了~2.45 Ga古老地壳物质再循环事件。斜长角闪岩~1.85 Ga的变质年龄代表了古元古代末期重要的区域性变质事件。鱼洞子杂岩物质组成和构造-热演化事件与崆岭杂岩和钟祥杂岩等扬子板块内部早前寒武纪结晶基底岩系具有可对比性,表明鱼洞子杂岩与扬子板块存在潜在的亲缘性。(2)碧口地块至少在新元古代早期~880 Ma已经处于持续俯冲且伴随板片回卷的动力学背景。碧口地块镁铁质深成岩体花岩沟辉长闪长岩、林后坝辉长岩和坪头山辉长岩的形成时代一致,约为880 Ma,是目前碧口地块中已识别最早的新元古代岩浆岩记录。花岩沟辉长闪长岩与典型弧岩浆作用的地球化学信号相似,属于岩石圈地幔楔橄榄岩发生重熔作用形成的产物,原始熔体源区遭受了俯冲沉积物熔体的改造。林后坝辉长岩和坪头山辉长岩具有基本一致的主微量元素和同位素组成,与典型E-MORB的组分特征类似,是与E-MORB源区类似的深部富集地幔物质上涌,并在减压条件下发生部分熔融而形成。花岩沟辉长闪长岩形成于与俯冲相关的岛弧环境,林后坝辉长岩和坪头山辉长岩属于俯冲洋壳板片发生板片回卷机制的岩浆响应。(3)碧口地块在~860-825 Ma依旧受控于持续俯冲伴随板片回卷的动力学体制。碧口地块长英质深成岩体白雀寺石英二长岩、八海河石英二长岩和石林沟二长花岗岩侵位年龄相似,形成于~860 Ma。麻柳铺花岗闪长岩侵位时限稍晚,形成时代为~825 Ma。白雀寺石英二长岩、八海河石英二长岩和石林沟二长花岗岩具有一致的同位素组分特征,二长花岗岩是石英二长岩熔体发生强烈分异结晶作用的产物。白雀寺石英二长岩和八海河石英二长岩属于典型的埃达克质岩,具有幔源特征的锆石Hf(εHf(t)=+4.8-+6.7)和全岩Nd同位素(εNd(t)=+1.7-+2.1)组成,属于俯冲板片回卷机制下,洋壳板片受到上涌软流圈地幔物质持续烘烤发生部分熔融,与上覆地幔楔橄榄岩相互作用形成的产物。麻柳铺花岗闪长岩为典型的I型花岗岩,具有富集的锆石Hf(εHf(t)=-15.0--10.9)及全岩Nd同位素(εNd(t)=-11.8--11.9)组成,是俯冲过程中幔源岩浆底侵致使碧口地块古老地壳物质发生重熔所形成,代表了碧口地块重要的古老物质再循环事件。(4)碧口地块持续的板片回卷触发了~845-760 Ma弧后伸展活动。碧口地块碧口群变质中-基性火山岩依据地球化学特征可以划分为Ⅰ组、Ⅱ组和Ⅲ组三种类型。Ⅰ组变质中-基性火山岩组分特征类似于IAB,形成于地幔楔橄榄岩的部分熔融,源区受到早期俯冲消减组分的交代;Ⅱ组变质基性火山岩与E-MORB的配分模式类似,源于上涌的深部富集地幔物质的部分熔融;Ⅲ组变质中-基性火山岩配分模式类似于OIB,源于深部软流圈地幔,岩浆演化过程中受到少量壳源组分的改造。碧口群变质酸性火山岩可以划分为Ⅰ组和Ⅱ组两种类型。Ⅰ组变质酸性火山岩具有变化范围较大的Mg O、Ni和Cr含量,源于中下地壳的重熔,岩浆演化中有幔源物质的加入;Ⅱ组变质酸性火山岩Mg O、Ni和Cr含量低,由碧口地块古老地壳发生重熔所形成。碧口群变质中-基性火山岩和变质酸性火山岩均属于碧口地块弧后伸展体制的岩浆响应。(5)碧口地块在~720 Ma构造-岩浆活动趋于沉寂,逐步过渡为板内裂陷的动力学体制。碧口地块横丹群碎屑沉积岩系是一套富集火山物质的沉积建造,具有近源沉积特征。碎屑锆石年代学的结果显示,下部白杨组和上部秧田坝组具有一致的最大沉积时限,约为720 Ma,表明横丹群属于新元古代早-中期快速堆积的沉积序列。横丹群整体具有类似的物源属性,白杨组和秧田坝组均显示出以新元古代(~915-720 Ma)为主并含有少量古元古代-中元古代(~2450-1750 Ma)年龄的碎屑锆石年龄谱系特征,显示碧口地块和邻近的扬子板块西北缘-西缘新元古代早期岩浆弧为主要物源区。横丹群白杨组和秧田坝组碎屑沉积岩具有相似的地球化学组成,组分特征与典型弧前盆地浊积岩相似。横丹群是碧口地块新元古代早-中期沉积盆地中发育的产物,沉积时限不早于~720 Ma。(6)综合上述最新研究成果以及区域已发表研究数据,提出碧口地块结晶基底形成于太古代-古元古代时期,认为碧口地块属于扬子板块西北缘早寒武纪构造单元。新元古代时期,碧口地块构造活动趋于活跃,演化过程主要包括以下四个阶段:新元古代早期(~880-860 Ma)俯冲板片回卷和岩浆弧逐步发展阶段;新元古代早期(~845-760Ma)俯冲作用持续进行、弧后伸展机制触发和弧后裂谷发育阶段;新元古代中期(~720Ma)构造体制转换和岩浆活动沉寂阶段;新元古代中-晚期岩浆作用停滞、裂陷-拗陷盆地发展和沉积盖层发育阶段。

甘保平[5](2021)在《敦煌地块古生代岩浆作用及其对中亚造山带构造演化的响应》文中研究指明敦煌地块位于塔里木克拉通和华北克拉通的衔接部位,为中亚造山带南缘具有前寒武纪变质基底的一个微陆块。敦煌地块在古生代经历了多期次、多阶段的构造演化过程,并形成了一些复杂的岩浆-变质杂岩,被认为与古亚洲洋南部俯冲-闭合过程中相关的造山事件密切有关,且其中的花岗质岩浆的成因和动力学机制对于揭示敦煌地块大陆地壳的演化和中亚造山带南缘的构造演化过程等均具有十分重要的地质意义。本论文在已有研究基础上,通过野外地质调研,选取敦煌地块北部的古生代花岗质岩石为研究对象,开展系统的岩相学、岩石学、锆石U-Pb年代学、主微量元素地球化学、矿物地球化学以及同位素地球化学(Sr-Nd-Pb-Hf)研究,试图揭示研究区古生代岩浆活动的时空分布规律,阐明古生代不同时期的岩石单元的成因机制、构造背景及深部动力学过程,从而为探讨敦煌地块古生代地壳演化和中亚造山带南缘的构造演化过程提供了依据,且取得了以下几点认识:(1)在敦煌地块东北部梁湖-小宛-大坡口子地区识别出了一套寒武纪花岗岩,锆石U-Pb年代学结果表明其侵位年龄约为510±2 Ma,为目前报道敦煌地区古生代时期最古老的深成侵入体。地球化学特征表明其属于准铝质、钙碱性I型花岗岩,具有正的εHf(t)值(+11.0~+14.7)和εNd(t)值(+2.3~+5.6),对应的模式年龄分别为754~520 Ma和970~740 Ma,以及高的放射性成因Pb同位素特征,表明岩浆起源于新生地壳的部分熔融作用,并有少量地幔物质的加入。其中的大坡口子细粒花岗岩具有埃达克质岩石的地球化学特征,如Sr=730–733 ppm,Y=1.84–1.93 ppm和Yb=~0.21 ppm,Sr/Y=380–398,属于加厚的新生地壳(至少大于40 km的地壳深度)部分熔融的产物。结合区域地质,本研究认为敦煌地块中这些寒武纪岩体形成于一个大陆弧的构造背景,为古亚洲洋南缘俯冲作用相关岩浆事件的产物,推测古亚洲洋南缘的初始俯冲时间可能发生于早寒武世。(2)敦煌地块奥陶和志留纪的岩浆岩主要出露在北部瓜州南地区,以梁湖石英闪长岩和十工二长花岗岩为代表,锆石U-Pb定年结果表明其侵位年龄分别为455±3 Ma和431±3 Ma。地球化学特征表明二者都属于准铝质、钙碱性I型花岗岩类岩石,且具有高Sr和低Y含量,以及高的Sr/Y比值,指示具有埃达克质岩石的属性。石英闪长岩具有负的εNd(t)值(-1.3~-3.2)和正的εHf(t)值(+3.8~+8.0),对应的模式年龄分别为1120~1090 Ma和1165~906 Ma,较高的Mg O-Cr-Ni含量和Mg#值以及Ba/La和La/Sm比值,表明其岩浆可能起源于俯冲板片(沉积物熔体+流体)部分熔融作用,随后与上覆地幔楔内的橄榄岩发生相互作用,后续在上升过程中同化了地壳物质,形成于俯冲相关的构造背景。二长花岗岩具有负的εNd(t)值(-3.6)和正到负且变化较大的εHf(t)值(-2.5~+3.0),对应的模式年龄分别为1320 Ma和1197~547 Ma,低的Mg O,Mg#值以及Cr-Ni-Co含量,表明其岩浆源区是由加厚的新生地壳和中元古代地壳物质混合而成,并且伴有少量的地幔物质参与,属于同碰撞构造背景下的岩浆产物。通过地壳厚度的初步估算,结果显示敦煌地块早志留世地壳厚度可高达50~55 km,推测是由古亚洲洋俯冲过程中幔源岩浆底侵以及后续敦煌地块和北山造山带最南部石板山地体大约在440~430 Ma发生碰撞所致。(3)敦煌地块泥盆纪花岗岩类主要分布在三危山-东水沟-蘑菇台地区,其中东水沟岩体为复式岩体,由石英闪长岩-花岗闪长岩-黑云母花岗岩组成,锆石U-Pb年代学结果表明其侵位年龄为390~380 Ma,侵入花岗闪长岩中的晚期英安斑岩形成年龄为367±4Ma。早期石英闪长岩-花岗闪长岩和晚期侵入体英安斑岩具有岛弧岩浆的地球化学特征,属于中-高钾、钙碱性、准铝质岩系,其中石英闪长岩-花岗闪长岩具有正的εNd(t)值(-0.73~+0.38)和εHf(t)值(+3.12~+10.7),对应的模式年龄分别为1.12~1.04 Ga和1.15~0.83 Ga,以及显示下地壳属性的Pb同位素组成。这些岛弧岩浆岩均被认为是在镁铁质幔源岩浆底侵作用下,诱发新生玄武质下地壳部分熔融作用的产物。黑云母花岗岩具有高Sr,低Y含量以及高的Sr/Y比值,表明具有埃达克质岩石的属性。此外,它们还具有高的Cr-Ni含量和Mg#值,正的εNd(t)值(+3.0),负到正且变化较大的εHf(t)值(-3.67~+12.2,大部分大于0),对应的模式年龄分别为1.34~0.57 Ga和0.82 Ga,以及低的Pb同位素组成,这些特征表明其可能起源于俯冲板片的部分熔融作用,随后与上覆地幔楔橄榄岩发生相互作用,并且岩浆上升期间可能受到一定程度的中元古代地壳的混染。(4)本研究从三危山-黄水沟北地区敦煌群中厘定出了450~440 Ma的片麻状英云闪长岩(属于第二、三岩组)和368±3 Ma的酸性火山岩(属于第四岩组)。片麻状英云闪长岩具有岛弧岩浆的特征,显示相对富集大离子亲石元素(如Rb,Ba,U和Pb),亏损高场强元素(如Nb,Ta和Ti)的特征,具有变化范围较大的εHf(t)值(-9.7~+10.4),表明岩浆起源于新生地壳物质和古老地壳物质的部分熔融作用。三危山酸性火山岩有负的εHf(t)值(-5.6~-1.9),古元古代的模式年龄(平均年龄为1640 Ma),指示岩浆起源于古老下地壳物质的熔融。结合已有的研究,表明敦煌群可能最晚形成于晚泥盆世(~368Ma),并非之前所认为的形成于1.95~1.83 Ga。(5)综合已有的研究,本论文认为敦煌地块属于中亚造山带南部的一个具有太古代-古元古代变质结晶基底微陆块。在早寒武世沉积盖层形成之后,在古生代乃至中生代其遭受了古亚洲洋南部俯冲-增生造山作用过程的强烈改造,使其地壳发生活化,在整个敦煌地区形成了广泛的寒武纪-二叠纪岩浆岩和晚奥陶世-泥盆纪变质岩。其中古生代岩浆作用大致可划分为六期:中寒武世(~510 Ma),晚奥陶世-早志留世(~440 Ma),早泥盆世(~410 Ma),晚泥盆世(390~360 Ma),中石炭世(~335 Ma),中-晚二叠世(~250~280 Ma),这些时代所发育的岩浆岩大部分属于富钠、钙碱性、准铝质-弱过铝质的I型花岗质岩石系列。敦煌地块经历了早古生代俯冲-碰撞造山过程和晚古生代俯冲-碰撞-伸展的两期构造演化过程,并在志留纪和石炭纪发生了两次地壳增厚事件(厚度达50~55 km)。此外,敦煌地块小宛地区和三危山地区分别属于寒武纪和泥盆纪时期的岩浆弧,该弧岩浆作用可能对敦煌地块北部古生代的地壳生长起了重要作用,而敦煌地块南部晚志留世-石炭纪岩浆作用事件主要以古老地壳再造为主。

郭军[6](2021)在《华北南缘小秦岭-熊耳山地区中生代岩浆岩地球化学研究》文中指出大陆碰撞造山带广泛出露碰撞后岩浆岩,它们的形成与汇聚板块边缘地壳岩石的再造和再循环具有密切联系。碰撞后长英质岩浆岩不仅记录了造山带地壳的再造,而且记录了碰撞造山带的构造演化。碰撞后镁铁质岩浆岩记录了不同性质地壳组分的再循环,而且其衍生物质交代地幔楔形成具有不均一的矿物组合和地球化学特征的交代地幔源区。碰撞后岩浆岩的地球化学特征不仅与岩浆源区性质有关,而且反映了造山带的化学地球动力学过程。秦岭造山带位于中国中部,关于其形成机制和构造演化过程的许多关键科学问题依旧悬而未决。华北陆块南缘小秦岭-熊耳山地区紧邻秦岭造山带北缘(北秦岭),广泛出露有中生代花岗岩和中-基性岩脉,它们的成因还存在巨大争议。本文对该区晚中生代花岗岩和中-基性岩脉进行了系统的岩相学、同位素年代学和地球化学研究,结果不仅确定了它们的形成时代和源区性质,而且为理解北秦岭-小秦岭大陆碰撞带的构造演化和俯冲隧道中不同地壳组分的再循环提供了地球化学线索。本文研究了小秦岭-熊耳山地区4个典型的晚中生代花岗岩体。根据微量元素和放射成因同位素特征以及残留锆石U-Pb年龄,这些花岗岩可以大致分为两组:组Ⅰ花岗岩来自华山岩体、文峪岩体和合峪岩体,具有高的Sr/Y和(La/Yb)N比值且Eu负异常不显着,类似于埃达克质岩石;以伏牛山岩体为代表的组Ⅱ花岗岩则具有低的Sr/Y和(La/Yb)N比值以及显着的Eu负异常。组Ⅰ花岗岩的侵位年龄较为一致(137-130 Ma),而组Ⅱ花岗岩的形成时代则变化较大(136-120 Ma)。组Ⅰ花岗岩来源于增厚造山带地壳的部分熔融,组Ⅱ花岗岩则由减薄的造山带地壳部分熔融形成。因此,华北南缘晚中生代花岗岩记录了该区早白垩世大规模岩石圈减薄。组Ⅰ花岗岩具有富集的Sr-Nd-Hf同位素组成,含有新太古代和古元古代U-Pb年龄的残留锆石。组Ⅰ花岗岩全岩Sr-Nd和锆石Hf-O同位素组成与华北南缘古老结晶基底相似,新太古代和古元古代残留锆石Hf-O同位素组成也与太华群和熊耳群一致。这表明组Ⅰ花岗岩主要来源于华北南缘古老结晶基底的部分熔融。组Ⅱ花岗岩中的古元古代残留锆石和部分同岩浆锆石具有低的εHf(t)值,表明其源区也含有相似的古老地壳岩石。但是,与组Ⅰ花岗岩相比,组Ⅱ花岗岩表现出相对弱富集的放射成因Sr-Nd-Hf同位素组成,表明有新生地壳物质的贡献。另外,组Ⅱ花岗岩中不仅含有古元古代U-Pb年龄的残留锆石,还含有早新元古代和早古生代U-Pb年龄的残留锆石,其Hf-O同位素组成分别与北秦岭榴辉岩/片麻岩的原岩锆石和古生代花岗岩的锆石相似。因此,组Ⅱ花岗岩是由华北南缘古老结晶基底和北秦岭新生地壳组成的混合源区在晚中生代部分熔融形成的。在寒武纪时期,原特提斯大洋板片牵引北秦岭微陆块向北俯冲到华北南缘之下,并在柯石英和金刚石稳定域发生超高压变质作用。随后深俯冲地壳发生拆离折返,部分北秦岭新生地壳残留在华北南缘之下,然后在晚中生代碰撞后伸展阶段与华北南缘古老结晶基底一起发生部分熔融,从而在小秦岭-熊耳山地区形成了组Ⅱ花岗岩。大陆碰撞带中的铝质A1型花岗岩通常形成于碰撞后长英质岩浆作用的末期,与碰撞后Ⅰ型花岗岩具有紧密的成因联系。关于铝质A1型花岗岩的成因和地质意义仍存在巨大争议。熊耳山地区太山庙正长花岗岩为我们研究铝质A1型花岗岩的源区性质和形成机制提供了很好的机会。本文对太山庙正长花岗岩和邻近的伏牛山花岗岩的岩相学、地质年代学和地球化学进行了系统的比较研究。太山庙正长花岗岩在119±1 Ma侵入于熊耳群火山岩中,与伏牛山岩体晚阶段非埃达克质花岗岩的侵位时代一致。太山庙正长花岗岩的全岩Nd和锆石Hf-O同位素组成也与伏牛山花岗岩相似,表明太山庙正长花岗岩来源于华北南缘古老结晶基底和北秦岭新生地壳组成的混合源区。根据岩相学和地球化学特征,太山庙正长花岗岩属于铝质A1型花岗岩,而伏牛山花岗岩为Ⅰ型花岗岩。太山庙正长花岗岩是伏牛山岩体晚阶段非埃达克质花岗岩浆经角闪石和斜长石的结晶分异形成的。因此,我们提出一个铝质A1型花岗岩的形成机制,即地壳来源的Ⅰ型非埃达克质花岗岩浆在浅部地壳结晶分异可以形成铝质A1型花岗岩。岩浆过程和岩浆源区性质均对铝质A1型花岗岩的岩石成因起重要作用,例如A型地球化学特征和低的Y/Nb 比值受控于角闪石和斜长石的结晶分异,而铝质的特征则取决于地壳源岩。铝质A1型花岗岩形成于碰撞后长英质岩浆作用的末期,标志着碰撞后伸展构造的结束。A型花岗岩的Y/Nb比值应该被谨慎地用来判断其源区性质和构造背景。大陆碰撞带存在两类具有不同地球化学特征的镁铁质岩浆岩,分别称为岛弧玄武岩型和洋岛玄武岩型,记录了俯冲陆壳和洋壳物质在不同深度的脱水熔融。汇聚板块边缘不同地壳组分都可能参与了再循环,形成具有不同矿物组合和地化学特征的地幔交代岩。本文对小秦岭-熊耳山地区晚中生代中-基性岩脉进行了地球化学研究,确定了它们的侵位时代和源区性质,并进一步讨论了中-基性岩脉的岩石成因和不同地壳再循环对其地幔源区的影响。根据微量元素特征,晚中生代中-基性岩脉可以分为两组:组Ⅰ中-基性岩脉为辉绿岩,具有低的TiO2/Al2O3和Nb/U比值以及岛弧型微量元素特征和富集的放射成因Sr-Nd-Hf同位素组成;组Ⅱ中-基性岩脉包括辉长岩、含辉石闪长岩和煌斑岩,具有高的TiO2/Al2O3和Nb/U比值以及洋岛玄武岩型微量元素特征和相对亏损的Sr-Nd-Hf同位素组成。两组中-基性岩脉分别在118-120 Ma和122-134 Ma侵位于华北南缘古老结晶基底太华群中。它们的地幔源区分别受到俯冲的北秦岭微陆块和先前俯冲的原特提斯洋壳来源的长英质熔体的化学交代,形成了具有不同矿物组合和地球化学特征的镁铁质-超镁铁质地幔交代岩。两组中-基性岩脉的Sr-Nd-Hf同位素变化范围很大,表明其地幔源区含有不同性质、不同比例的再循环地壳组分。全岩地球化学和锆石Lu-Hf同位素组成表明,组Ⅰ中-基性岩脉的地幔源区中的再循环地壳组分以华北南缘古老结晶基底和北秦岭新生地壳为主,地幔源区中广泛存在金云母,还有少量角闪石和辉石。组Ⅱ中的煌斑岩脉的地幔源区的古老地壳物质为华北南缘结晶基底来源的海底沉积物,地幔交代岩富含单斜辉石、角闪石和石榴石;辉长岩脉和含辉石闪长岩脉的地幔源区则以新生洋壳玄武岩的再循环为主,岩浆源区主要由辉石和橄榄石组成。华北南缘晚中生代中-基性岩脉记录了不同类型地壳组分的再循环以及地幔源区不均一的矿物组合和地球化学特征。综上所述,小秦岭-熊耳山地区晚中生代岩浆岩不仅记录了地壳的再造和再循环,而且记录了北秦岭-小秦岭大陆碰撞带的构造演化。华北南缘古老结晶基底和北秦岭新生地壳均参与了地壳再造和再循环,形成大陆碰撞后花岗岩和中-基性岩脉的岩浆源区。铝质A1型花岗岩形成于碰撞后长英质岩浆作用的末期,代表碰撞后伸展构造的终结。不同类型地壳组分再循环形成的地幔交代岩具有不同的矿物组合和地球化学特征,由此可形成具有不同地球化学特征的镁铁质岩浆岩。

纪政[7](2020)在《海拉尔-塔木察格盆地中生代火山岩年代学与地球化学研究》文中研究表明本论文对中国东北海拉尔盆地及其毗邻的蒙古塔木察格盆地中生代火山岩进行了系统的岩石学、锆石U-Pb年代学、全岩地球化学、全岩Sr-Nd同位素和锆石Hf同位素研究,建立了海拉尔-塔木察格盆地中生代火山-沉积地层的精确年代地层格架,查明了盆地中生代火山岩的岩石成因和构造背景,揭示了环太平洋构造体系和蒙古-鄂霍茨克构造体系对中国东北地区叠加改造的地球动力学机制。根据地震反射剖面、岩石组合、陆相古生物化石组合以及区域地层对比,海拉尔-塔木察格盆地中生代火山-沉积地层传统上自下而上被划分为塔木兰沟组、铜钵庙组和南屯组,但其形成时代缺乏高精度同位素年代学的制约。本文对海拉尔-塔木察格盆地32口钻井中的中生代火山岩岩心样品进行了系统的LA-ICP-MS锆石U-Pb定年,限定了中生代火山-沉积地层的形成时代,建立了精确的年代地层格架:塔木兰沟组形成于中侏罗世卡洛夫期-晚侏罗世提塘期(166145 Ma);铜钵庙组形成于早白垩世贝里阿斯期-瓦兰今早期(142136 Ma);南屯组一段形成于早白垩世瓦兰今晚期-阿普特早期(135120 Ma);南屯组二段形成于早白垩世阿普特晚期-阿布尔早期(119111 Ma)。本文在海拉尔-塔木察格盆地中识别出了多种不同类型的中生代火山岩,包括高钾埃达克质火山岩、低钾埃达克质火山岩、富铌玄武安山岩、高硅火山岩、高镁埃达克质火山岩,它们的形成与古太平洋板块的俯冲和蒙古-鄂霍茨克洋的闭合密切相关。中侏罗世高钾埃达克质岩石由加厚的石榴角闪岩相大陆下地壳发生脱水熔融而形成,为蒙古-鄂霍茨克洋闭合的产物。晚侏罗世早期低钾埃达克质火山岩来源于古太平洋板块平板俯冲过程中榴辉岩相洋壳的含水熔融,产生的熔体在快速上升穿越较薄的地幔楔时与橄榄岩发生非常有限的反应。晚侏罗世晚期富铌玄武安山岩源自受俯冲板片熔体交代的含金云母石榴石相二辉橄榄岩地幔楔低程度的部分熔融(<2%),为古太平洋板块回卷的产物。早白垩世晚期高镁埃达克质火山岩为拆沉大陆下地壳部分熔融所产生的初始埃达克质岩浆在上升过程中与周围地幔橄榄岩发生反应的产物;晚侏罗世-早白垩世高硅火山岩存在两种成因类型,其中I型高硅火山岩起源于年轻的含云母富钾玄武质下地壳的部分熔融,A型高硅火山岩来源于曾经历脱水却并不亏损熔体的富钾中基性中-下地壳的部分熔融。此外,A型高硅火山岩主要形成于晚侏罗世晚期和早白垩世晚期,分别对应于古太平洋板块的回卷和岩石圈的拆沉。在上述研究基础上,本文结合前人发表的资料,全面阐释了东北地区中生代岩浆活动的时空分布规律,构建了环太平洋构造体系和蒙古-鄂霍茨克构造体系叠加改造的地球动力学过程。侏罗纪期间古太平洋板块的平板俯冲造成东北地区岩浆活动向陆内迁移,而靠近海沟的松辽盆地和吉黑东部于晚侏世-早白垩世早期逐渐进入岩浆活动的间歇期。受蒙古-鄂霍茨克洋闭合的影响,海拉尔-塔木察格盆地和大兴安岭地区中侏罗世经历了显着的地壳增厚。当古太平洋板块的平板部分俯冲到具有较厚岩石圈的海拉尔-塔木察格盆地和大兴安岭地区之下时,由于板片整体俯冲深度的增加导致洋壳充分发生榴辉岩化,俯冲板片不再稳定开始发生回卷。晚侏罗世晚期-早白垩世早期古太平洋板片回卷速度较慢,所引起的软流地幔物质上涌的规模和速度较小,且影响范围局限于俯冲板片前缘及其附近。在古太平洋板块持续回卷的过程中,松辽盆地和吉黑东部的岩浆活动相继复苏,形成东北地区向海沟(东南向)变年轻的早白垩世岩浆活动迁移规律。同时,随着下沉的古太平洋板块逐渐在地幔过渡带滞留脱水,引发东北地区岩石圈的拆沉和早白垩世岩浆活动的峰期自西北向东南迁移。

闫浩瑜[8](2020)在《青藏高原南拉萨亚地体晚白垩世-中新世岩浆岩成因机制及深部动力学过程》文中研究说明印度和欧亚大陆自新生代以来的持续挤压碰撞导致了世界上最年轻和最壮观的青藏高原陆-陆碰撞造山带的形成,且这个造山带的形成和演化一直是国际地球科学领域研究最热的问题之一。拉萨地体位于欧亚大陆的最南端,是欧亚大陆与印度大陆距离最近的构造单元,也是受陆-陆碰撞影响最大的地体。在拉萨地体中,尤其是南拉萨分布的晚白垩世-中新世的冈底斯花岗岩基和古新世-始新世的林子宗火山岩一直是研究的热点和焦点。因为这些岩浆岩记录了印度-欧亚大陆碰撞前-中-后的复杂过程,所以它们是揭示新特提斯大洋板片俯冲消减、印度-欧亚大陆碰撞以及高原隆升机制等过程的关键。然而,迄今为止对于南拉萨出露的晚白垩世-中新世的冈底斯花岗质岩石和古新世-始新世的林子宗火山岩的成因机制及深部动力学过程仍然存在较多的争议,阻碍了我们对新特提斯大洋板片俯冲消减过程,以及随后持续的陆-陆挤压碰撞过程形成的岩浆岩的物质来源及岩浆过程的理解。本文结合野外地质和室内整理的资料,选择出露在南拉萨碰撞前的南木林晚白垩世闪长岩、碰撞后的日喀则中新世埃达克质岩墙和碰撞过程中的林周盆地古新世典中组火山岩作为研究对象。通过详细的岩石学、锆石U-Pb年代学、全岩主-微量和同位素地球化学(Sr-Nd-Mo),并结合已发表的数据,揭示了这些碰撞前-中-后形成的不同类型岩浆岩的岩石成因和深部动力学过程,且取得了如下进展:(1)碰撞前的南木林闪长岩形成时代为94.3~92.3 Ma,这些年龄结果与前人在该地区报道的辉长岩-辉长闪长岩锆石U-Pb年龄是一致的。南木林晚白垩世辉长岩、辉长闪长岩和闪长岩是正常的弧岩浆岩,具有几乎一致的Sr-Nd同位素组成,区域上部分同期的埃达克质岩石也具有相对一致的Sr-Nd-Hf同位素组成。本文通过元素和同位素分析认为这些(辉长岩-闪长岩和埃达克质岩石)同期但不同类型的岩浆岩是来自混杂岩在弧下地幔楔区的不同深度下熔融形成,而非来自交代地幔楔熔融形成。混杂岩(包含大洋玄武岩、大洋沉积物以及地幔楔橄榄岩组分)首先在俯冲隧道即俯冲板片和地幔楔接触界面进行均匀的物理混合,然后部分以底辟的形式上升到浅的地幔楔区经熔融形成不具有埃达克质岩石地球化学特征的南木林晚白垩世辉长岩-闪长岩,部分被运输到较深的俯冲隧道熔融形成埃达克质岩石。晚白垩世这些不同类型弧岩浆岩的形成是由于新特提斯大洋板片向南回撤导致,在大洋板片回撤的过程中上涌的热的软流圈地幔以及热的角流为混杂岩提供热源促使其熔融。(2)碰撞后的日喀则岩墙形成时代为中新世,其锆石U-Pb年龄为14.8~10.3 Ma,具有富集的Sr-Nd同位素组成,并显示典型的埃达克质岩石地球化学特征,主要为增厚且年轻的拉萨镁铁质下地壳熔融的产物。根据Na2O、K2O含量以及Na2O/K2O比值,这些岩墙可以划分为两种类型:富钾的岩墙和富钠的岩墙。两类岩墙Na2O、K2O含量的不同和富集的Sr-Nd同位素组成说明其形成的过程中有古老的印度大陆地壳的物质不同程度参与。此外,富钠的岩墙显示高的MgO、Cr、Ni和Na2O含量,指示软流圈地幔物质在其形成过程中也参与它们的形成。综合文献资料和本文研究,指示了壳-幔物质不同程度的参与导致区域上晚渐新世-中新世埃达克质岩石具有不同的地球化学特征。根据后碰撞岩浆岩受南北向的断裂控制以及地球物理等证据,本文认为南拉萨亚地体出露的晚渐新世-中新世岩浆岩的形成是由印度大陆板片撕裂所造成的(3)碰撞过程中的林周盆地林子宗火山岩系列中典中组火山岩形成时代为62.1~60.9 Ma,与前人研究结果一致。目前对于林子宗火山岩典中组安山岩存在不同的岩石成因认识,以Mo et al.(2007,2008)的观点最具代表性,他们认为典中组火山岩来源于新特提斯洋壳及其上覆的远洋沉积物在角闪岩相的熔融形成。但是我们的元素和同位素(Sr-Nd-Mo)的证据却指示该套火山岩很可能来自于混杂岩的底辟熔融。混杂岩在俯冲隧道即俯冲板片和地幔楔界面混合均匀,然后以底辟的形式上升到较浅的地幔楔区,在热的软流圈地幔和地幔楔角流的作用下发生部分熔融形成典中组安山岩,该动力学过程受控于新特提斯大洋板片在古新世期间向南的回转或回撤。(4)这三期岩浆岩形成的深部动力学过程是不同的,记录了洋-陆俯冲到陆-陆碰撞造山的复杂过程,在这些岩浆岩形成的过程中不同的物质以及不同的岩浆过程参与它们的形成。

黄飞[9](2020)在《冈底斯带南缘东嘎花岗岩和大竹卡辉长岩成因及地质意义》文中提出青藏高原作为世界海拔最高的高原,因其具有独特的隆升演化历史,一直受到广大地质科研工作者密切关注;青藏高原南部的拉萨地块作为印度与亚欧大陆碰撞前缘,其中-新生代岩浆作用与构造演化尤其引人注目。拉萨地块南部,发育有近东西展布的长达上千公里的冈底斯岩基,记录了中生代以来新特提斯洋北向俯冲和印度-亚欧大陆碰撞的深部构造演化过程。目前的研究结果显示,冈底斯弧的岩浆活动主要集中在四个时期,即中生代早侏罗世和晚白垩世以及新生代早第三纪和中新世时期。虽然上述成果对人们认识和了解青藏高原南部中-新生代从大洋俯冲到陆-陆碰撞构造演化过程具有十分重要的作用,但从总体上看前人研究均是以某一个岩体或以局部为主体,并没有从冈底斯岩浆弧的整体演化上考虑这些岩浆作用特征。本论文在分析和研究冈底斯弧中部东嘎侏罗纪花岗岩以及大竹卡始新世辉长岩年代学、地球化学和Sr-Nd同位素组成的基础上,结合前人的研究成果,以便从总体上了解冈底斯弧在中生代侏罗纪和新生代早期岩浆作用的时空分布特点及其深部动力学机制。本论文主要取得以下研究成果:1、位于冈底斯弧中部的日喀则东嘎乡中侏罗世(169.6 Ma)花岗质岩体,以花岗岩和花岗闪长岩为主,具有高SiO2(68.3271.54 wt.%)、Al2O3(15.5216.45wt.%)、Na2O(4.295.09 wt.%)值、低MgO(0.550.66 wt.%)、Mg#(1734)、K2O(0.991.98 wt.%)值;同时显示出一定的埃达克质地球化学组成特征,如低Y(811 ppm)和Yb(0.91.6 ppm)值,和高Sr(580684 ppm)值;而且具有亏损的Sr-Nd同位素组成(Isr=0.703590.70602;εNd(t)=+4.51+5.39)。上述东嘎中侏罗世花岗岩地球化学和同位素组成特征表明其源于新生的加厚下地壳,源区为角闪岩相,部分熔融过程中可能有角闪石、石榴子石、金红石等熔融残余相。2、位于冈底斯弧中部的大竹卡始新世辉长岩以小型岩脉形式存在。它们具有低SiO2(48.0951.33 wt.%)、K2O(0.41.67 wt.%)值和高MgO(4.946.39wt.%)、Al2O3(16.9517.53 wt.%)、Na2O(2.633.45 wt.%)值;虽然其稀土元素配分图类似于富集型洋脊玄武岩(E-MORB)并具有明显亏损的亏损的Sr-Nd同位素组成(Isr=0.704200.70385;εNd(t)=+4.8+5.1),但微量元素蜘网图显示Nb、Ta、Ti等高场强元素(HFSE)亏损的特征。上述大竹卡始新世辉长岩地球化学和同位素组成特征表明其由软流圈地幔减压部分熔融形成,并很可能在上升过程中受到受到岩石圈地幔的混染作用,经历了镁铁质矿物(如橄榄石、单斜辉石)、Fe-Ti氧化物的结晶分离以及少量斜长石的堆晶作用。结合区域上冈底斯带南缘形成于6541 Ma的绝大多数长英质岩浆岩(SiO2>69 wt.%)具有较高的锆石饱和温度(687874℃)特征,指示这些镁铁质及其同期的中酸性岩浆作用可能是由于板片断离所致。3、冈底斯弧侏罗纪岩浆岩时空分布上具有如下特征:(1)冈底斯弧整体上基性-酸性岩浆活动均发育,但东段和西段分别主要为火山岩和侵入岩;(2)在东西向上,90°E以东的侏罗纪岩浆活动具有由东向西逐渐变年轻的趋势,然而90°E以西无明显趋势;在南北向上,侏罗纪岩浆活动主要分布在29.48°N以南;(3)侏罗纪弧岩浆活动过程中,其富集组分在早期和晚期分别以俯冲沉积物和俯冲板片为主;受到中拉萨地块古老基底的影响,东段岩浆岩同位素组成具有较大变化范围。4、冈底斯弧大量的侏罗纪弧岩浆作用很可能导致该区域发生了一定程度的地壳加厚。5、冈底斯弧古新世-始新世岩浆岩地球化学组成具有如下特征:(1)镁铁质岩石中的流体贡献由南向北逐渐降低;(2)长英质岩浆岩(SiO2>69 wt.%)锆石饱和温度(Tzr)由南向北逐渐增大。

亓华胜[10](2019)在《不同构造环境下斑岩型铜金矿床地球化学对比 ——以印尼巴布亚Grasberg和安徽茶亭为例》文中研究说明本博士论文主要内容是对两个不同构造背景下斑岩型铜-金矿床相关的侵入岩及其成矿作用。该研究由两个部分组成:首先是对印尼巴布亚Grasberg铜-金矿床主成矿期的埃达克质岩的成岩与成矿研究;然后对长江中下游地区新发现的茶亭铜-金矿床两类的含矿埃达克质岩与不含矿闪长玢岩进行对比研究。通过对其含矿相关的埃达克质岩进行系统的地球化学分析研究,从岩石属性及成因机制、源区组成的研究,对不同构造背景下斑岩铜-金矿床的成岩与铜金成矿及动力学背景进行一个有效的制约。并通过两者成矿相关的埃达克质岩进行地球化学特征对比,探讨岩浆源区组成和成矿物理化学条件。具体如下:(1)印尼巴布亚Grasberg成矿埃达克质岩与铜金成矿新生代的斑岩在印尼巴布亚Grasberg地区孕育了一个世界级的斑岩铜-金矿床。本次主要针对Grasberg铜-金矿床主成矿期的埃达克质岩开展了相关的成岩、成矿地球化学研究。主成矿期的侵入岩是二长斑岩,对其三个样品锆石LAICP-MSU-Pb年龄分析显示,主成矿期侵入岩形成于3.06~2.86Ma,属于上新世。这些岩石表现出埃达克质岩的地球化学特征,如高Sr,低Y,Yb含量,与高Sr/Y(48.8~6 5.5)和(La/Yb)N。它们还表现出高的Al2O3、K2O含量,以及高的K2O/Na2O(0.94~1.33)比值,属于钾质埃达克质岩。它们还富集轻稀土和大离子亲石(LIELs)元素,贫化高场强(HFSEs)和重稀土元素,无Eu负异常(Eu/Eu*=0.97-1.28,av.1.04),Nb-Ta-Ti明显负异常,Pb正异常。同位素上,它们还表现出富集的(87Sr/86Sr)i=0.7052~0.7060,负的 εNd(t)=-11.8~-14.6 和高的放射成因 Pb,(206Pb/204Pb)i=17.88~18.19,(207Pb/204Pb)i=15.54~15.58,(208Pb/204Pb)i=38.49~38.59。结合其锆石中发现古老的继承锆石核以及负的εHf(t)=-6.7~-20和老的二阶段模式年龄1.6~2.3Ga,指示了 Grasberg埃达克质岩源区有大量古老下地壳的加入。同时,其适中的MgO含量和Mg#(38-52,av.42)和同位素证据,指示了地幔物质的参与。Th/Yb-Ba/Th和Nb/Y-Ba/La图解也证明了地幔端元为受流体交代的富集岩石圈地幔。锆石Ce4+/Ce3+和Eu/Eu*结合硫同位素特征表明Grasberg含矿埃达克质岩具有高氧逸度,高水含量以及深源的硫。因此,我们认为Grasberg埃达克岩是古老下地壳部分熔融与受流体交代的富集岩石圈地幔熔体混合后,经历单斜辉石和角闪石分离结晶,之后同化混染部分下地壳形成的,其铜-金矿化是古老下地壳与受流体交代的富集岩石圈地幔共同作用的产物。通过同位素和微量元素特征,结合该区新生代的构造演化,我们判定Grasberg埃达克岩处于一个后碰撞背景。在约25 Ma时,澳大利亚北缘洋壳开始向北俯冲到太平洋板块下,在俯冲的早期阶段是洋壳向下俯冲,俯冲作用导致玄武岩和沉积物脱水,中间释放的大量的水和含Cl等卤素流体交代上覆岩石圈地幔,形成受流体交代的富集地幔。随着澳大利亚板块继续俯冲,碰撞造山活动开始。约6 Ma,澳大利亚大陆岩石圈向东北俯冲中开始发生碰撞拆沉,重的大陆岩石圈向下拆沉后,由于热软流圈上涌和岩石圈地幔的伸展减压作用,约6~3Ma发生了古老下陆壳的部分熔融。同时,受流体交代的大陆岩石圈富集地幔由于软流圈上涌提供的热量而发生部分熔融。部分熔融的富集的岩石圈地幔熔体与部分熔融的古老下地壳混合形成埃达克质岩浆,在之后的上升过程中发生单斜辉石和角闪石的分离结晶。在4~2 Ma,俯冲带的碰撞过程以巴布亚造山带发生大规模的走滑断裂结束。而这一走滑事件为岩浆的上升以及后来岩浆侵入到浅部形成铜金矿床创造了通道。(2)长江中下游成矿带茶亭成矿埃达克岩与不成矿闪长玢岩长江中下游成矿带新发现一个与白垩世侵入岩有关的超大型茶亭斑岩型铜-金矿床。在茶亭地区有两类侵入岩被识别出来,与铜金矿化相关的石英闪长斑岩(埃达克质岩)和不含矿的闪长玢岩。锆石LA-ICP-MSU-Pb定年显示茶亭侵入岩在145-136Ma侵入。两者都属于高钾钙碱性系列,具有富集大离子亲石元素和轻稀土元素,亏损高场强元素和重稀土元素,显示出轻微的Eu的负异常。赋矿石英闪长斑岩具有埃达克质岩的特征,具有高的Sr和Sr/Y比值,低的MgO(1.31-2.09 wt.%),中等的(La/Yb)N 和 Mg#(34.6-54.6)和低的 K2O/Na2O(<1)比值,脱耦的Sr/Y和(La/Yb)N,以及低的Th/U(3.49-6.08)比值。赋矿石英闪长玢岩具有略微富集 Sr-Nd-Hf 同位素((87Sr/86Sr)i=0.70655~0.70717;εNd(t)=-6.9~-8.8;εHf(t)=-7.6~-10.6)和高的放射成因Pb同位素((206b/204Pb)i=18.22~18.70,(207Pb/204Pb)i=15.63~15.66和(208Pb/204Pb)i=38.49~38.97),表明赋矿石英闪长斑岩来源于俯冲洋壳的部分熔融混合了富集地幔并在上升过程中混染了少量下地壳物质。而贫矿的闪长玢岩,因其具有低的Si02含量和高的MgO(3.894.06 wt.%),Cr、Ni(平均值47.6 ppm和15.01 ppm)和高的Mg#(51.2~69.8),结合与赋矿侵入岩相似的Sr-Nd-Pb-Hf同位素特征,显示其形成于富集岩石圈地幔的部分熔融并同化了陆壳物质。锆石Ce4+/Ce3+和Eu/Eu*表明茶亭赋矿石英闪长斑岩比贫矿的闪长玢岩具有更高的氧逸度,可能与部分熔融的俯冲洋壳密切相关,因此有利于铜金矿化的形成。结合该区中生代的构造演化,茶亭地区在古太平洋板块俯冲背景下处于一个活动大陆边缘环境。在约148 Ma之前,古太平洋板块俯冲到扬子地块的大陆岩石圈之下,俯冲洋壳的脱水或流体使岩石圈地幔交代,形成富集地幔。在大约145 Ma时,俯冲的大洋板片和沉积物的部分熔融发生在茶亭地区,产生了原生埃达克质熔体。埃达克质熔体不可能直接上升到浅部地壳,而是与来自交代的幔源岩浆的熔体混合。混合后的高氧逸度岩浆在岩浆上升过程中经历了部分地壳同化作用,并就位于地壳浅层,在茶亭地区形成了含矿石英闪长斑岩体及其相关铜金矿床。几个百万年后,同化了部分下陆壳物质的部分熔融的富集地幔熔体侵位到浅部地壳中,形成不含矿的闪长玢岩侵入体。通过对印尼巴布亚Grasberg和长江中下游茶亭两个斑岩铜-金矿床的研究,我们认为不同的构造背景下的斑岩型铜-金矿床的成岩、成矿机制与其源区组成及其构造动力学背景密不可分。

二、Adakitic火成岩对大陆地壳增厚过程的指示:以青藏北部火山岩为例(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、Adakitic火成岩对大陆地壳增厚过程的指示:以青藏北部火山岩为例(论文提纲范文)

(1)藏南冈底斯岩浆带研究进展与展望(论文提纲范文)

1 研究进展及相关科学问题梳理
    1.1 冈底斯带花岗质岩石成因的精细化研究有待提高
    1.2 冈底斯带中段南缘辉长岩类的时空分布及岩石成因机制
    1.3 印度—亚洲大陆碰撞前(新特提斯洋俯冲期),冈底斯带地壳生长的过程和深部动力学机制仍不清楚
    1.4 冈底斯地区地幔储库的性质和演化细节仍然不清楚
    1.5 新特提斯洋板片断离的时间和机制存在争议
    1.6 拉萨地体的构造属性仍然需要进一步厘定
    1.7 冈底斯岩浆带精细的年代学格架仍然需要完善
    1.8 冈底斯带含矿埃达克岩和钾质—超钾质火山岩岩浆源区以及地球动力学背景存在异议
    1.9 冈底斯带晚三叠世至早—中侏罗世的岩石成因和新特提斯洋起始俯冲的时间存在较大争议
    1.1 0 冈底斯带白垩纪岩浆的成因机制和大地构造背景仍然不清楚
2 研究展望及启示
    2.1 构造地质学和岩石地球化学的交叉应用是解决一些基础地质问题的钥匙
    2.2 加强冈底斯带弧后盆地中沉积岩系的研究
3 结束语

(2)扬子板块西缘新元古代花岗岩类岩浆成因及深部动力学意义(论文提纲范文)

摘要
ABSTRACT
第一章 前言
    1.1 选题背景
    1.2 研究现状
        1.2.1 花岗岩类研究热点、现状及进展
        1.2.2 扬子西缘新元古代岩浆作用与构造意义研究现状
        1.2.3 扬子西缘新元古代花岗岩类研究现状
    1.3 问题的提出
    1.4 本文研究方法及内容
    1.5 研究成果及意义
    1.6 论文工作小结
第二章 区域地质概况
    2.1 扬子西缘古元古代火山沉积序列
    2.2 扬子西缘中元古代火山沉积序列
    2.3 扬子西缘新元古代火山沉积序列
第三章 扬子西缘新元古代俯冲流体与沉积物熔体交代地幔岩浆作用:来自ca.850-835 Ma水陆高Mg~#闪长岩的约束
    3.1 引言
    3.2 岩体地质与样品岩相学
    3.3 地球化学实验数据结果
        3.3.1 LA-ICP-MS锆石U-Pb年代学
        3.3.2 全岩主微量元素地球化学
        3.3.3 全岩Sr-Nd同位素
        3.3.4 锆石原位Lu-Hf同位素
    3.4 讨论
        3.4.1 水陆高Mg~#闪长岩的岩浆源区
        3.4.2 水陆高Mg~#闪长岩:俯冲流体与沉积物熔体交代地幔作用
        3.4.3 水陆高Mg~#闪长岩的地质意义
    3.5 本章 小结
第四章 扬子西缘新元古代成熟大陆地壳的不平衡熔融:来自ca.840-835 Ma宽裕-茨达过铝质花岗岩的见解
    4.1 引言
    4.2 岩体地质与样品岩相学
    4.3 地球化学实验数据结果
        4.3.1 LA-ICP-MS锆石U-Pb年代学
        4.3.2 全岩主微量元素地球化学
        4.3.3 全岩Sr-Nd同位素
        4.3.4 锆石原位Lu-Hf同位素
    4.4 讨论
        4.4.1 宽裕-茨达过铝质花岗岩的岩浆源区
        4.4.2 宽裕-茨达过铝质花岗岩:岩浆混合与不平衡熔融?
        4.4.3 宽裕-茨达过铝质花岗岩的形成
    4.5 本章 小结
第五章 扬子西缘新元古代不同地壳层次的岩浆响应:来自ca. 780 Ma大陆Ⅰ型花岗闪长岩-花岗岩的证据
    5.1 引言
    5.2 岩体地质与样品岩相学
    5.3 地球化学实验数据结果
        5.3.1 LA-ICP-MS锆石U-Pb年代学
        5.3.2 全岩主微量元素地球化学
        5.3.3 全岩Sr-Nd同位素
        5.3.4 锆石原位Lu-Hf同位素
    5.4 讨论
        5.4.1 大陆I型花岗闪长岩-花岗岩
        5.4.2 大陆I型花岗闪长岩-花岗岩:不同地壳源区的部分熔融
        5.4.3 大陆I型花岗闪长岩-花岗岩的地球化学多样性
        5.4.4 大陆I型花岗闪长岩-花岗岩的形成
    5.5 本章 小结
第六章 扬子西缘新元古代俯冲背景区域地壳增厚到减薄:来自ca.810-750 Ma辉长闪长岩-埃达克花岗岩-A型花岗岩的证据
    6.1 引言
    6.2 岩体地质与样品岩相学
    6.3 地球化学实验数据结果
        6.3.1 LA-ICP-MS锆石U-Pb年代学
        6.3.2 全岩主微量元素地球化学
        6.3.3 全岩Sr-Nd同位素
        6.3.4 锆石原位Lu-Hf同位素
    6.4 讨论
        6.4.1 大尖山辉长闪长岩:俯冲流体交代地幔的部分熔融
        6.4.2 大尖山埃达克花岗岩:加厚新生镁铁质下地壳的部分熔融
        6.4.3 攀枝花A型花岗岩:低压环境长英质地壳的部分熔融
        6.4.4 扬子西缘新元古代俯冲背景下区域性地壳增厚到减薄
    6.5 本章 小结
第七章 扬子西缘新元古代花岗岩类时空分布及地质意义
    7.1 扬子西缘新元古代俯冲构造环境
    7.2 扬子西缘新元古代俯冲背景下的地壳增长与重熔
    7.3 扬子西缘新元古代俯冲背景下的构造转换进程
    7.4 扬子西缘新元古代交代地幔演化及不同深度层次的局部熔融作用
第八章 主要认识和下一步工作设想
    8.1 主要认识
    8.2 下一步工作设想
参考文献
致谢
攻读博士学位期间取得的科研成果
作者简介
附录

(3)长江中下游早白垩世岩浆岩元素地球化学和钙同位素研究(论文提纲范文)

摘要
abstract
第1章 引言
    1.1 长江中下游
    1.2 埃达克岩
    1.3 A型花岗岩
    1.4 选题依据及其意义
    1.5 研究内容及工作量
        1.5.1 研究内容
        1.5.2 完成工作量
第2章 钙同位素
    2.1 钙同位素地球化学
    2.2 钙同位素研究发展历史
    2.3 钙同位素研究现状
        2.3.1 钙同位素分馏机理
        2.3.2 硅酸岩地球的Ca同位素组成
        2.3.3 其他端元储库的Ca同位素组成
        2.3.4 岩浆过程中的Ca同位素分馏作用
        2.3.5 钙同位素示踪深部碳循环
第3章 区域地质背景和样品处理与实验分析
    3.1 区域地质背景
        3.1.1 前寒武纪构造演化
        3.1.2 早中生代三叠纪构造演化
        3.1.3 晚中生代构造演化
    3.2 样品采集
    3.3 样品制备
    3.4 全岩主微量元素分析
    3.5 锆石U-Pb年代学和锆石微量元素分析
    3.6 钙同位素分析
        3.6.1 实验室准备工作
        3.6.2 样品溶解
        3.6.3 化学分离
        3.6.4 质谱测定
        3.6.5 数据处理
第4章 长江中下游地区埃达克岩的元素地球化学研究
    4.1 样品
    4.2 结果
    4.3 讨论
        4.3.1 管店岩体的成因
        4.3.2 斑岩矿化、板片熔融和氧逸度
    4.4 小结
第5章 上地壳的Ca同位素组成和~(40)K衰变校正
    5.1 上地壳的Ca同位素组成
    5.2 K-Ca同位素体系
    5.3 常用的~(40)K衰变校正方法
    5.4 基于迭代计算的~(40)K衰变校正
    5.5 小结
第6章 长江中下游地区A型花岗岩的Ca同位素研究
    6.1 样品
    6.2 结果
    6.3 讨论
        6.3.1 长江中下游地区A型花岗岩的岩浆源区
        6.3.2 长江中下游地区A型花岗岩中的Ca同位素变化
        6.3.3 长江中下游地区A型花岗岩的动力学机制
    6.4 小结
第7章 结论与展望
    7.1 结论
    7.2 展望
参考文献
附录
致谢
作者简历及攻读学位期间发表的学术论文与研究成果

(4)扬子西北缘碧口地块新元古代构造演化(论文提纲范文)

摘要
ABSTRACT
第一章 绪论
    1.1 选题背景及研究意义
    1.2 研究现状及存在问题
        1.2.1 Rodinia超大陆重建
        1.2.2 扬子板块新元古代构造演化
        1.2.3 碧口地块研究现状及存在问题
    1.3 研究内容及研究思路
        1.3.1 研究内容
        1.3.2 研究思路
    1.4 分析测试方法
        1.4.1 LA-ICP-MS锆石U-Pb年代学分析
        1.4.2 全岩主微量元素分析
        1.4.3 全岩Sr和Nd同位素分析
        1.4.4 MC-ICP-MS锆石Lu-Hf同位素分析
    1.5 完成的工作量
第二章 区域构造格架
    2.1 扬子板块前寒武纪构造格架
    2.2 扬子板块太古代-古元古代岩石单元
        2.2.1 扬子板块北缘
        2.2.2 南秦岭构造带
        2.2.3 扬子板块西北缘
        2.2.4 扬子板块西缘
    2.3 扬子板块中元古代岩石单元
        2.3.1 扬子板块北缘
        2.3.2 扬子板块西北缘
        2.3.3 扬子板块西缘
    2.4 扬子板块新元古代早期岩石单元
        2.4.1 扬子板块北缘
        2.4.2 南秦岭构造带
        2.4.3 扬子板块西北缘
        2.4.4 扬子板块西缘
        2.4.5 江南造山带
    2.5 扬子板块新元古代中-晚期岩石单元
第三章 碧口地块地质概况
    3.1 碧口地块构造格架
    3.2 碧口地块物质组成
        3.2.1 鱼洞子杂岩地质特征
        3.2.2 碧口群地质特征
        3.2.3 横丹群地质特征
        3.2.4 深成岩体地质特征
        3.2.5 沉积盖层地质特征
第四章 太古代-古元古代鱼洞子杂岩同位素年代学及地球化学
    4.1 野外地质及岩石学特征
    4.2 鱼洞子杂岩同位素年代学
        4.2.1 奥长花岗质片麻岩
        4.2.2 角闪斜长片麻岩
        4.2.3 花岗片麻岩
        4.2.4 斜长角闪岩
    4.3 鱼洞子杂岩地球化学
        4.3.1 奥长花岗质片麻岩
        4.3.2 角闪斜长片麻岩
        4.3.3 花岗片麻岩
    4.4 鱼洞子杂岩成因探讨
        4.4.1 鱼洞子杂岩演化时限
        4.4.2 奥长花岗质片麻岩岩石成因
        4.4.3 角闪斜长片麻岩岩石成因
        4.4.4 花岗片麻岩岩石成因
    4.5 小结
第五章 新元古代早期碧口群变质火山岩地球化学及成因背景
    5.1 野外地质及岩石学特征
    5.2 碧口群变质火山岩地球化学
        5.2.1 变质中-基性火山岩
        5.2.2 变质酸性火山岩
    5.3 碧口群变质火山岩成因探讨
        5.3.1 变质中-基性火山岩岩石成因
        5.3.2 变质酸性火山岩岩石成因
    5.4 小结
第六章 新元古代早-中期横丹群同位素年代学及地球化学
    6.1 野外地质及岩石学特征
    6.2 横丹群碎屑岩同位素年代学
    6.3 横丹群碎屑岩地球化学
    6.4 横丹群碎屑岩盆地属性探讨
        6.4.1 沉积时限
        6.4.2 物质源区化学属性
        6.4.3 碎屑锆石物源分析
        6.4.4 沉积盆地构造背景
    6.5 小结
第七章 新元古代早期镁铁质岩体同位素年代学及地球化学
    7.1 野外地质及岩石学特征
    7.2 镁铁质岩体同位素年代学
        7.2.1 花石沟辉长闪长岩
        7.2.2 林后坝辉长岩
        7.2.3 坪头山辉长岩
    7.3 镁铁质岩体地球化学
        7.3.1 花石沟辉长闪长岩
        7.3.2 林后坝、坪头山辉长岩
    7.4 镁铁质岩体成因探讨
        7.4.1 镁铁质岩体形成时限
        7.4.2 花石沟辉长闪长岩岩石成因
        7.4.3 林后坝、坪头山辉长岩岩石成因
    7.5 小结
第八章 新元古代早期长英质岩体同位素年代学及地球化学
    8.1 野外地质及岩石学特征
    8.2 长英质岩体同位素年代学
        8.2.1 白雀寺石英二长岩
        8.2.2 八海河石英二长岩
        8.2.3 石林沟二长花岗岩
        8.2.4 麻柳铺花岗闪长岩
    8.3 长英质岩体地球化学
        8.3.1 白雀寺、八海河石英二长岩
        8.3.2 石林沟二长花岗岩
        8.3.3 麻柳铺花岗闪长岩
    8.4 长英质岩体成因探讨
        8.4.1 长英质岩体形成时限
        8.4.2 石英二长岩-花岗闪长岩-二长花岗岩成因联系
        8.4.3 石英二长岩-二长花岗岩岩石成因
        8.4.4 花岗闪长岩岩石成因
    8.5 小结
第九章 讨论
    9.1 碧口地块前寒武纪关键地质事件构造-年代学格架
        9.1.1 新太古代–古元古代——早期地壳形成及演化期
        9.1.2 新元古代早期——地壳快速增生及构造活动期
    9.2 碧口地块前寒武纪关键地质单元动力学意义
        9.2.1 鱼洞子杂岩对动力学背景的约束
        9.2.2 镁铁质-长英质岩体对动力学背景的约束
        9.2.3 碧口群对动力学背景的约束
        9.2.4 横丹群对动力学背景的约束
    9.3 碧口地块新元古代构造演化过程
第十章 结论与展望
    10.1 主要进展与结论
    10.2 不足与展望
参考文献
附录
攻读博士学位期间取得的科研成果
致谢
作者简介

(5)敦煌地块古生代岩浆作用及其对中亚造山带构造演化的响应(论文提纲范文)

摘要
ABSTRACT
第一章 前言
    1.1 选题依据及研究意义
    1.2 研究现状
        1.2.1 大陆地壳生长与花岗岩类
        1.2.2 中亚造山带研究现状
        1.2.3 中亚造山带大陆增生机制
        1.2.4 敦煌地块研究进展及存在问题
    1.3 研究思路、内容及方法
        1.3.1 研究思路
        1.3.2 研究内容和方法
    1.4 论文主要工作量及研究成果
        1.4.1 论文主要工作量
        1.4.2 研究成果
第二章 区域地质背景
    2.1 大地构造位置
    2.2 地层
    2.3 侵入岩特征
    2.4 变质作用特征
第三章 敦煌地块中寒武世花岗岩地球化学特征及成因机制
    3.1 引言
    3.2 野外地质及岩石学特征
    3.3 分析结果
        3.3.1 锆石U-Pb年代学
        3.3.2 锆石Hf同位素组成
        3.3.3 主、微量元素地球化学特征
        3.3.4 全岩Sr-Nd-Pb同位素组成
    3.4 讨论
        3.4.1 深成岩体的结晶年龄
        3.4.2 岩浆源区和岩石成因
        3.4.3 构造背景
    3.5 小结
第四章 敦煌地块晚奥陶世-早志留世花岗岩类地球化学特征及成因机制
    4.1 引言
    4.2 野外地质及岩石学特征
    4.3 分析结果
        4.3.1 锆石U-Pb年代学
        4.3.2 锆石Hf同位素组成
        4.3.3 主、微量元素地球化学特征
        4.3.4 全岩Sr-Nd-Pb同位素组成
    4.4 讨论
        4.4.1 岩浆的形成温度
        4.4.2 岩浆源区和岩石成因
        4.4.3 构造背景
    4.5 小结
第五章 敦煌地块古生代片麻状英云闪长岩和火山岩岩石成因及构造意义
    5.1 .引言
    5.2 .野外地质及岩石学特征
    5.3 .分析结果
        5.3.1 锆石U-Pb年代学
        5.3.2 锆石Hf同位素组成
        5.3.3 主、微量元素地球化学特征
    5.4 讨论
        5.4.1 形成时代
        5.4.2 岩石成因
        5.4.3 构造意义
    5.5 小结
第六章 敦煌地块东水沟泥盆纪复式岩体成因机制及地质意义
    6.1 引言
    6.2 野外地质及岩石学特征
    6.3 分析结果
        6.3.1 锆石U-Pb年代学
        6.3.2 锆石Hf同位素组成
        6.3.3 主、微量元素地球化学特征
        6.3.4 全岩Sr-Nd-Pb同位素组成
        6.3.5 矿物化学特征
    6.4 讨论
        6.4.1 岩浆源区和岩石成因
        6.4.2 构造背景
    6.5 小结
第七章 敦煌地块构造属性
    7.1 敦煌地块前寒武纪大陆地壳演化
    7.2 构造归属探讨
第八章 敦煌地块古生代构造-岩浆演化及对中亚造山带南缘构造演化的启示
    8.1 敦煌地块古生代岩浆-变质作用时空分布规律
        8.1.1 古生代岩浆活动时空分布规律
        8.1.2 古生代变质作用演化规律
    8.2 敦煌地块古生代地壳厚度的变化
    8.3 敦煌地块古生代地壳生长
    8.4 中亚造山带南缘的构造演化
主要认识及展望
    1.主要认识
    2.存在问题及展望
参考文献
附录
    A.1 测试分析方法
        A.1.1 锆石阴极发光图像
        A.1.2 锆石U-Pb定年及微量元素分析
        A.1.3 锆石Lu-Hf同位素分析
        A.1.4 全岩主、微量元素分析
        A.1.5全岩Sr-Nd-Pb同位素测试
        A.1.6 矿物化学分析
    A.2 附表
攻读博士学位期间取得的科研成果
    1.博士在读期间发表的论文
    2.在读期间参加的科研项目及学术活动
致谢
作者简介

(6)华北南缘小秦岭-熊耳山地区中生代岩浆岩地球化学研究(论文提纲范文)

摘要
ABSTRACT
第一章 导论
    1.1 研究背景
        1.1.1 小秦岭-熊耳山地区中生代岩浆岩
        1.1.1.1 研究现状
        1.1.1.2 存在问题
        1.1.2 本文研究内容及意义
        1.1.3 工作量小结
第二章 研究区域地质背景
    2.1 华北南缘
        2.1.1 太华群基底
        2.1.2 熊耳群
        2.1.3 沉积盖层
        2.1.4 中生代岩浆作用
        2.1.5 中生代Au-Mo成矿作用
    2.2 北秦岭造山带
        2.2.1 宽坪群
        2.2.2 二郎坪群
        2.2.3 秦岭群
        2.2.4 丹凤群
第三章 样品分析方法
    3.1 全岩主量和微量元素分析
    3.2 全岩Sr-Nd同位素分析
    3.3 锆石内部结构分析
    3.4 锆石SIMS氧同位素分析
    3.5 锆石U-Pb定年
        3.5.1 SIMS锆石U-Pb定年
        3.5.2 LA-ICP-MS锆石U-Pb定年
    3.6 锆石原位Lu-Hf同位素分析
第四章 晚中生代花岗岩的成因
    4.1 引言
    4.2 样品描述
        4.2.1 华山岩体
        4.2.2 文峪岩体
        4.2.3 合峪岩体
        4.2.4 伏牛山岩体
    4.3 锆石U-Pb年龄
        4.3.1 华山岩体
        4.3.2 文峪岩体
        4.3.3 合峪岩体
        4.3.4 伏牛山岩体
    4.4 全岩主量和微量元素
    4.5 全岩Sr-Nd同位素
    4.6 锆石Hf-O同位素
        4.6.1 华山岩体
        4.6.2 文峪岩体
        4.6.3 合峪岩体
        4.6.4 伏牛山岩体
    4.7 讨论
        4.7.1 花岗岩的侵位时代
        4.7.2 花岗岩成因
        4.7.3 花岗岩的岩浆源区属性
    4.8 大陆碰撞带地壳再造
    4.9 小结
第五章 太山庙正长花岗岩的成因
    5.1 引言
    5.2 样品描述
        5.2.1 太山庙岩体
        5.2.2 伏牛山岩体
    5.3 锆石U-Pb年龄
    5.4 全岩主量和微量元素
    5.5 Sr-Nd同位素
    5.6 锆石Hf-O同位素
    5.7 讨论
        5.7.1 太山庙岩体侵位时代和碰撞后长英质岩浆演化序列
        5.7.2 太山庙岩体的岩浆源区性质
        5.7.3 太山庙正长花岗岩和伏牛山花岗岩类型
        5.7.4 太山庙正长花岗岩的成因机制
        5.7.5 高硅花岗岩的物理分异机制
    5.8 铝质A_1型花岗岩的成因机制和地质意义
    5.9 小结
第六章 晚中生代中-基性岩脉的成因
    6.1 引言
    6.2 样品描述
    6.3 锆石U-Pb同位素年龄
        6.3.1 辉绿岩脉
        6.3.2 煌斑岩脉
        6.3.3 含辉石闪长岩脉
    6.4 全岩主量和微量元素
    6.5 Sr-Nd同位素
    6.6 锆石Lu-Hf同位素
        6.6.1 辉绿岩脉
        6.6.2 煌斑岩脉
        6.6.3 闪长岩脉
    6.7 讨论
        6.7.1 镁铁质岩脉的侵位时代
        6.7.2 中-基性岩脉的地幔源区
        6.7.3 中-基性岩脉的成因和地幔源区的交代矿物
    6.8 不同地壳组分再循环
    6.9 小结
第七章 结论
参考文献
致谢
博士研究生期间发表论文目录

(7)海拉尔-塔木察格盆地中生代火山岩年代学与地球化学研究(论文提纲范文)

中文摘要
Abstract
第1章 绪论
    1.1 研究背景及选题依据
    1.2 研究现状及存在的问题
    1.3 研究思路与拟解决的关键问题
        1.3.1 研究思路
        1.3.2 拟解决的关键问题
    1.4 论文依托的科研项目与工作量
        1.4.1 论文依托的科研项目
        1.4.2 论文主要工作量
第2章 区域地质概况
    2.1 中国东北区域构造格架
        2.1.1 额尔古纳地块
        2.1.2 兴安地块
        2.1.3 松辽地块
        2.1.4 佳木斯-兴凯地块
        2.1.5 那丹哈达地体
    2.2 研究区地质背景
        2.2.1 区域构造
        2.2.2 区域地层
        2.2.3 区域岩浆岩
第3章 样品的地质与岩相学特征
    3.1 布达特群
    3.2 塔木兰沟组
    3.3 铜钵庙组
    3.4 南屯组一段
    3.5 南屯组二段
第4章 海拉尔-塔木察格盆地中生代火山岩的年代学
    4.1 分析方法
        4.1.1 样品制备
        4.1.2 锆石内部结构分析
        4.1.3 LA-ICP-MS锆石U-Pb定年
    4.2 定年结果
        4.2.1 布达特群
        4.2.2 塔木兰沟组
        4.2.3 铜钵庙组
        4.2.4 南屯组一段
        4.2.5 南屯组二段
    4.3 年代学讨论
        4.3.1 海拉尔-塔木察格盆地火山-沉积地层的形成时代
        4.3.2 东北地区中生代岩浆活动的时空分布规律
第5章 海拉尔-塔木察格盆地火山岩的地球化学
    5.1 分析方法
        5.1.1 全岩主量与微量元素分析方法
        5.1.2 全岩Sr-Nd同位素分析方法
        5.1.3 锆石Hf同位素分析方法
    5.2 地球化学特征
        5.2.1 中侏罗世高钾埃达克质火山岩
        5.2.2 晚侏罗世早期低钾埃达克质火山岩
        5.2.3 晚侏罗世晚期富铌玄武安山岩
        5.2.4 晚侏罗世-早白垩世高硅火山岩
        5.2.5 早白垩世晚期高镁埃达克质火山岩
    5.3 岩石成因
        5.3.1 中侏罗世高钾埃达克质火山岩
        5.3.2 晚侏罗世早期低钾埃达克质火山岩
        5.3.3 晚侏罗世晚期富铌玄武安山岩
        5.3.4 晚侏罗世-早白垩世高硅火山岩
        5.3.5 早白垩世晚期高镁埃达克质岩石
第6章 中生代岩浆活动的地球动力学
    6.1 中侏罗世岩浆活动与蒙古-鄂霍茨克洋的闭合
    6.2 晚侏罗世早期岩浆活动与古太平洋板块的平板俯冲
    6.3 晚侏罗世晚期-早白垩世早期岩浆活动与古太平洋板块的回卷
    6.4 早白垩世晚期岩浆活动与岩石圈的拆沉
第7章 结论与问题
    7.1 主要结论
    7.2 主要创新点
    7.3 存在问题与建议
参考文献
附录
作者简介及在学期间所取得的科研成果
致谢

(8)青藏高原南拉萨亚地体晚白垩世-中新世岩浆岩成因机制及深部动力学过程(论文提纲范文)

摘要
ABSTRACT
第一章 引言
    1.1. 研究背景
    1.2. 研究历史和现状
        1.2.1. 冈底斯岩基
        1.2.2. 林子宗火山岩
    1.3. 科学问题
        1.3.1. 南拉萨亚地体碰撞前晚白垩世岩浆岩的岩石成因问题
        1.3.2. 南拉萨亚地体碰撞后晚渐新世-中新世埃达克质侵入体岩石成因问题
        1.3.3. 南拉萨亚地体碰撞过程中古新世林子宗火山岩岩石成因问题
    1.4. 研究内容与技术方案
    1.5. 论文完成工作量
第二章 实验分析测试方法
    2.1. 锆石U-Pb年代学分析测试方法
    2.2. 全岩主-微量元素分析测试方法
    2.3. 全岩Sr-Nd同位素分析测试方法
    2.4. 全岩Mo同位素分析测试方法
第三章 地质背景
    3.1. 区域构造格架
    3.2. 青藏高原南拉萨亚地体
第四章 碰撞前南拉萨亚地体晚白垩世不同类型弧岩浆岩成因机制及深部动力学过程
    4.1. 地质背景
        4.1.1. 火山-沉积地层
        4.1.2. 侵入岩
        4.1.3. 构造单元
    4.2. 南木林县闪长岩的岩相学、锆石U-Pb年代学和地球化学特征
        4.2.1. 岩相学
        4.2.2. 锆石U-Pb年代学
        4.2.3. 岩石地球化学特征
    4.3. 岩石成因
        4.3.1. 地壳混染和分离结晶
        4.3.2. 俯冲的大洋沉积物在弧岩浆岩中的印记
        4.3.3. 混杂岩熔融形成碰撞前南木林晚白垩世的辉长岩、辉长闪长岩和闪长岩
    4.4. 混杂岩在不同深度下熔融产生不同的弧岩浆岩
    4.5. 深部动力学过程
第五章 碰撞后日喀则中新世埃达克质岩墙成因机制及深部动力学过程
    5.1. 地质背景
        5.1.1. 火山-沉积地层
        5.1.2. 蛇绿岩单元
        5.1.3. 构造单元
        5.1.4. 侵入岩
    5.2. 日喀则岩墙的岩相学、锆石U-Pb年代学和地球化学特征
        5.2.1. 岩相学
        5.2.2. 锆石U-Pb年代学
        5.2.3. 岩石地球化学特征
    5.3. 岩石成因
        5.3.1. 富钾的岩墙
        5.3.2. 富钠的岩墙
    5.4. 壳-幔物质不同程度参与晚渐新世-中新世埃达克质岩石形成
    5.5. 深部动力学过程
第六章 碰撞过程中林周盆地古新世典中组安山岩成因机制及深部动力学过程
    6.1. 地质背景
        6.1.1. 火山-沉积地层
        6.1.2. 侵入岩
        6.1.3. 构造单元
    6.2. 林周盆地安山岩的岩相学、锆石U-Pb年代学和地球化学特征
        6.2.1. 岩相学
        6.2.2. 锆石U-Pb年代学
        6.2.3. 岩石地球化学特征
    6.3. 岩石成因
        6.3.1. 蚀变、分离结晶以及地壳混染的影响
        6.3.2. 判别俯冲的大洋沉积物加入
        6.3.3. 典中组安山岩的岩石成因
        6.3.4. 变化的Mo同位素指示了典中组安山岩是由混杂岩熔融形成
    6.4. 深部动力学过程
第七章 南拉萨亚地体晚白垩世-中新世岩浆演化的深部动力学过程
第八章 主要结论以及下一步工作计划
    8.1. 主要结论
    8.2. 下一步工作计划
参考文献
附录
致谢
作者简介、在学期间发表的学术论文

(9)冈底斯带南缘东嘎花岗岩和大竹卡辉长岩成因及地质意义(论文提纲范文)

摘要
Abstract
第1章 引言
    1.1 选题背景及意义
    1.2 研究现状
        1.2.1 俯冲带研究现状
        1.2.2 冈底斯岩浆弧研究现状
    1.3 科学问题
        1.3.1 侏罗纪岩浆岩时空分布、成因及区域地球化学组成变化
        1.3.2 侏罗纪地壳生长
        1.3.3 始新世基性岩成因及区域地球化学组成变化
    1.4 研究方案
    1.5 本文工作量
第2章 青藏高原区域地质背景
    2.1 主要地块
        2.1.1 松潘-甘孜地块
        2.1.2 羌塘地块
        2.1.3 拉萨地块
        2.1.4 喜马拉雅地块
    2.2 主要分界线
        2.2.1 金沙江缝合带
        2.2.2 班公湖-怒江缝合带
        2.2.3 雅鲁藏布江缝合带
第3章 分析方法
    3.1 全岩主微量元素分析
        3.1.1 样品前处理
        3.1.2 主量元素分析测试
        3.1.3 微量元素分析测试
    3.2 Sr-Nd同位素分析测试
    3.3 锆石U-Pb年代学分析测试
第4章 东嘎侏罗纪花岗岩地球化学组成及岩石成因
    4.1 研究区地质背景
    4.2 岩相学
    4.3 年代学
    4.4 地球化学组成
        4.4.1 主量元素
        4.4.2 微量元素
        4.4.3 Sr-Nd同位素
    4.5 东嘎花岗岩岩石成因
    4.6 小结
第5章 大竹卡始新世辉长岩地球化学组成及岩石成因
    5.1 研究区地质背景
    5.2 岩相学
    5.3 年代学
    5.4 地球化学组成
        5.4.1 主量元素特征
        5.4.2 微量元素特征
        5.4.3 Sr-Nd同位素特征
    5.5 岩石成因
        5.5.1 蚀变和地壳同化混染的影响
        5.5.2 结晶分离和堆晶作用
        5.5.3 流体以及沉积物熔体的影响
        5.5.4 岩浆源区
    5.6 小结
第6章 侏罗纪岩浆岩地球化学组成变化及地质意义
    6.1 侏罗纪岩浆岩时空分布组成
    6.2 侏罗纪岩浆岩地球化学组成对比
        6.2.1 微量元素比值对岩浆作用过程的指示
        6.2.2 同位素组成变化规律
    6.3 侏罗纪地壳生长指示
    6.4 侏罗纪-早白垩世构造演化
    6.5 小结
第7章 古新世-始新世岩浆岩地球化学组成变化及地质意义
    7.1 古新世-始新世岩浆岩地球化学组成变化
    7.2 碰撞时间探讨
    7.3 小结
第8章 结论
参考文献
附录
致谢
作者简历及攻读学位期间发表的学术论文与研究成果

(10)不同构造环境下斑岩型铜金矿床地球化学对比 ——以印尼巴布亚Grasberg和安徽茶亭为例(论文提纲范文)

摘要
ABSTRACT
第一章 绪论
    1.1 研究背景
        1.1.1 不同构造背景与斑岩铜金矿
        1.1.2 斑岩铜-金矿床与埃达克岩
        1.1.3 印尼巴布亚斑岩铜-金矿研究现状
        1.1.4 长江中下游斑岩铜-金矿研究现状
    1.2 科学问题、研究方法及内容
    1.3 主要工作概述
    1.4 取得主要研究成果
第二章 区域地质背景
    2.1 印尼巴布亚区域地质背景
        2.1.1 印尼巴布亚地质背景
        2.1.2 印尼巴布亚Grasberg斑岩铜金矿床地质背景
    2.2 长江中下游南陵-宣城矿集区地质背景
        2.2.1 南陵-宣城矿集区区域地质背景
        2.2.2 茶亭斑岩型铜-金矿床区域地质背景
第三章 样品处理与分析方法
    3.1 全岩主微量元素分析
    3.2 单矿物电子探针分析
    3.3 锆石U-Pb同位素及微量元素分析
    3.4 锆石原位Lu-Hf同位素分析
    3.5 全岩Sr-Nd-Pb同位素分析
    3.6 原位S同位素分析
第四章 印尼巴布亚Grasberg斑岩型铜-金矿床
    4.1 样品描述
    4.2 分析结果
        4.2.1 主微量元素
        4.2.2 锆石U-Pb年代学
        4.2.3 锆石原位Lu-Hf同位素
        4.2.4 全岩Sr-Nd-Pb同位素
        4.2.5 矿石S同位素
    4.3 讨论
        4.3.1 岩浆演化过程
        4.3.1.1 陆壳混染
        4.3.1.2 部分熔融or AFC过程?
        4.3.2 岩浆源区组成
        4.3.3 铜金成矿启示
        4.3.4 构造背景及成矿动力学模型
    4.4 小结
第五章 安徽南陵-宣城矿集区茶亭斑岩型铜-金矿床
    5.1 样品描述
    5.2 分析结果
        5.2.1 主微量元素
        5.2.2 锆石U-Pb年代学
        5.2.3 锆石Lu-Hf同位素
        5.2.4 全岩Sr-Nd-Pb同位素
        5.2.5 矿石原位S同位素
    5.3 讨论
        5.3.1 岩石演化过程
        5.3.1.1 陆壳混染?
        5.3.1.2 分离结晶or部分熔融?
        5.3.2 岩石成因
        5.3.2.1 茶亭含矿埃达克岩成因
        5.3.2.2 茶亭闪长玢岩成因
        5.3.3 岩浆源区
        5.3.4 茶亭埃达克质岩对铜金成矿启示
        5.3.4.1 茶亭斑岩铜金矿床S同位素
        5.3.4.2 岩浆氧化状态和铜金矿化
        5.3.4.3 构造背景及成矿动力学模型
    5.4 小结
第六章 结论
参考文献
附录
致谢
在读期间发表的学术论文与取得的其他研究成果

四、Adakitic火成岩对大陆地壳增厚过程的指示:以青藏北部火山岩为例(论文参考文献)

  • [1]藏南冈底斯岩浆带研究进展与展望[J]. 孟元库,袁昊岐,魏友卿,张书凯,刘金庆. 高校地质学报, 2022
  • [2]扬子板块西缘新元古代花岗岩类岩浆成因及深部动力学意义[D]. 朱毓. 西北大学, 2021
  • [3]长江中下游早白垩世岩浆岩元素地球化学和钙同位素研究[D]. 罗泽彬. 中国科学院大学(中国科学院广州地球化学研究所), 2021(01)
  • [4]扬子西北缘碧口地块新元古代构造演化[D]. 惠博. 西北大学, 2021(12)
  • [5]敦煌地块古生代岩浆作用及其对中亚造山带构造演化的响应[D]. 甘保平. 西北大学, 2021(12)
  • [6]华北南缘小秦岭-熊耳山地区中生代岩浆岩地球化学研究[D]. 郭军. 中国科学技术大学, 2021
  • [7]海拉尔-塔木察格盆地中生代火山岩年代学与地球化学研究[D]. 纪政. 吉林大学, 2020(08)
  • [8]青藏高原南拉萨亚地体晚白垩世-中新世岩浆岩成因机制及深部动力学过程[D]. 闫浩瑜. 西北大学, 2020(01)
  • [9]冈底斯带南缘东嘎花岗岩和大竹卡辉长岩成因及地质意义[D]. 黄飞. 中国科学院大学(中国科学院广州地球化学研究所), 2020(08)
  • [10]不同构造环境下斑岩型铜金矿床地球化学对比 ——以印尼巴布亚Grasberg和安徽茶亭为例[D]. 亓华胜. 中国科学技术大学, 2019

标签:;  ;  

埃达克质火成岩对陆壳增厚过程的指示——以青藏北部火山岩为例
下载Doc文档

猜你喜欢