问:大学高数论文――导数的应用
- 答:1、任何涉及到时间的瞬时变化率、空间的逐点变化率,都是导数的应用;
2、具体而言,只要涉及到比值的物理量,都存在导数的运用。
例如:
速度、角速度、加速度、角加速度、功率、压强、电流强度、电动势、
比热、压缩系数、膨胀系数、、、、、、、、
3、在任何自然学科、工程学科、经济学科、人文学科、、、、处处都是运用,
写上一千万本书,也是冰山一角。
4、微积分在几百年前就已经非常成熟了,我们对微积分的理论建立,没有一丝
半毫的贡献。庞大的现代数学、科学、工程、经济理论的建立,与我们毫不
相干。一切的一切,我们只是学习别人的理论,迄今依然到处充满歪解。
5、导数的学习、运用,在英美是从初中开始的。比我们的高三学生学的内容要
深、广很多;他们的高中课程是我们大一大二的内容。
6、楼主的问题,是被教师忽悠了。这完全谈不上是论文,至多只是初中生的读书
心得。夸张成论文,显示出的是出题教师的低劣,是对学生的智力的毁灭。这
种教师,百分之一百万是滥竽充数、害人子弟的货色!
为有这样的教师,感到悲哀,感到愤怒!
为可怜的学生,感到绝望! - 答:大学高数
论
我知道怎么做
问:高数中的导数与微分有何关系
- 答:导数是解决函数的变化率的问题,微分是近似计算函数的增量导引出的概念,而积分则是它们的逆运算,是根据导函数求原函数的,它们在概念上是完全不同的,但在计算上有很大联系;
导数与微分可以相互转化, y′=dy/dx dy=y′dx ;积分逆用导数公式进行运算. - 答:导数是解决函数的变化率的问题,微分是近似计算函数的增量导引出的概念,而积分则是它们的逆运算
- 答:这个差异很大的,总的来说就是语文个英语的区别(举个例子)
问:高数中的导数与微分
- 答:求导:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限。在一个函数存在导数时,称这个函数可导或者可微分。可导的函数一定连续。不连续的函数一定不可导。求极限:(1)、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;(2)、无穷大根式减去无穷大根式时,分子有理化,然后运用(1)中的方法;(3)、运用两个特别极限;(4)、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。