如何在数学教学中实施“创新教育”

如何在数学教学中实施“创新教育”

一、数学教学中如何实施“创新教育”(论文文献综述)

李兆敏[1](2021)在《“课程思政”视域下面向高中美术生的数学教学设计研究 ——以“不等式”为例》文中认为“课程思政”要构建“三全”育人格局,即各类课程落实立德树人的任务要与思想政治课程同向同行,协同共育全面发展的社会主义合格接班人和可靠建设者,实现对新一代青年价值塑造、知识传授和能力培养,其中数学课程责无旁贷。参加雄安新区支教时,发现高中美术生的教育存在专业知识和思想政治教育结合力度不够的现象,针对问题,采用文献分析法、问卷调查法,了解到当前美术生迷茫困惑状态明显、是非辨别能力薄弱、价值观念不成熟的特点突出,在美术生价值塑造黄金时段,探索将价值观教育寓于专业课教学中,实现全方位育人,已成为教育改革的重要研究课题。通过对美术生思想情况的调查,总结出美术生在人生规划、爱国表现、价值取向、思想特点、思政教育获得方式五个方面的表现,在此基础上确立“课程思政”切入点理论模型。切入点理论模型从辩证唯物主义观教育、爱国情怀教育、科学人文素养教育、创新思维教育和生态文明观教育五个维度的内容展开,并指导完成以“不等式”相关内容为例的教学设计、实践与评价。研究表明:在课程思政教学设计原则指导下,基于已有教学设计模型和优秀案例总结构建了课程思政数学教学设计的流程,包括课程思政切入点规划、教学要素分析、教学实施设计和教学评价设计四个环节。区别于传统教学设计模型,课程思政契入点模型贯穿于整个数学教学设计,目标设计增设了课程思政目标,效果评价规避了成绩衡量能力的片面性,从成绩、意识、观念、行动进行综合考量,通过实践与反思不断优化教学设计。实现课程思政在数学教学资源上的拓展,在教学评价上的突破,在实践中取得阶段性的研究成果。研究得到的教学策略,从语言、资源、价值、意识、能力五个层面进一步指导课程思政在其他数学内容的实践。语言层面强调契合新时代美术生的用语方式,资源包含课程内外思政元素和时代发展典型案例,价值层面注重于对学生三观的影响,实现塑智塑魂塑价值观的育人追求,意识着眼于国家人才发展需要的创新意识,并树立环保意识,能力层面把课程思政落实到提高学生综合能力。

郑琳湘[2](2021)在《小学高年级数学生本教学现状及对策研究 ——以M地区为例》文中提出小学阶段课程改革的要求是充分发挥学生的主体地位,调动学生学习的兴趣和积极性。数学作为小学阶段的重要学科,小学数学教学应与小学阶段课程改革要求方向相一致。生本教学以学生发展为本,尊重学生的独立性、创造性和情感需要,顺应学生的学习天性,创造良好开放的学习环境让学生主动学习,充分发挥学生的主体作用,这与小学阶段课程改革的要求不谋而合。现如今,不少基础教育数学教师在课堂上实施生本教学,取得了一定的教学效果。与此同时,小学数学生本教学实施过程中凸显出来了一些问题,亟待解决。本研究采用文献法、问卷调查法,以M地区为例,对M地区小学高年级数学生本教学现状展开调查,调查教师对生本教学的认识情况、生本教学的实施情况、生本教学的评价情况、生本教学的效果、学校对生本教学的组织与管理情况五个方面。依据调查分析结果得出存在教师对生本教学内涵认识不深入、教师对生本教学实施策略缺少系统的认知、前置性作业布置频率不高、合作教学策略运用不当、教学未突出学生主体地位、忽视学生学习过程评价、缺少学生自主评价、生本教学培训和教研活动开展频率低、生本教学培训方式的开放性不足九个问题。针对上述问题,提出学校开展生本培训和教研活动,学校聘请专家对教师进行指导,学校建立生本激励制度,提高前置性作业布置频率,恰当运用合作教学策略,突出学生的主体地位,注重学生学习过程评价,注重引导学生自评策略。本研究有助于M地区小学高年级数学教师解决生本教学实施中出现的问题,提高生本教学实施效率,同时,也可以为其他地区实施小学高年级数学生本教学改革提供借鉴。

焦继超[3](2021)在《“课程思政”视域下高中数学教学设计研究 ——以预备知识主题为例》文中进行了进一步梳理推动课程思政建设是新时代对高中生思想政治教育改革创新的重要措施。高中数学教师需要思考,在课程思政视域下如何进行教学设计,把立德树人落实于教学中,不仅达到知识传授、能力提高的目的,更重要的是在价值引领下使其有机融合。在文献研究基础上,确立人的全面发展理论、人本主义学习理论以及隐性教育理论为理论基础,通过调查了解高中数学教学设计中落实课程思政教育目标的现状与问题,运用理论研究、案例研究和行动研究等方法,以预备知识主题为例,通过教学设计及实践,探索高中数学学科践行课程思政的原则与方法。研究表明高中数学教师对课程思政认同度高,但实践操作层面存在差异,做好相关培训和管理评价是未来值得关注的问题;学生对于课程思政元素融入的态度积极,数学成绩平均分高于对照班,但未形成显着性差异。课程思政视域下教学设计要遵循导向性、自然性、过程性以及情感性等原则。导向性是指教师需明确政治立场,坚定政治方向,按照国家要求的育人方向培养新时代的高中生;自然性是指教师在教学设计中自然地融入课程思政;过程性是指教师需随着学生的发展,将课程思政理念落实到教学设计及实践;情感性是指教师在教学设计时应充分考虑师生互动过程中的情感要素。课程思政视域下高中数学教学策略包括:充分挖掘教学内容中的课程思政元素,做好教学设计各环节,渗透学科课程思政,营造特色课堂文化。

康雯[4](2021)在《TPMK视角下信息技术深度融合初中数学教学的视频课例研究 ——以2019年广西“一师一优课”为例》文中提出我国的《教育信息化2.0行动计划》、《义务教育课程标准(2011年版)》和《普通高中数学课程标准(2017年版)》等相关文件对信息技术深度融合数学教学提出了新的要求。但从现有的相关文献来看,信息技术深度融合数学教学的研究主要集中在理论指导和实践运用部分,如何评价信息技术深度融合初中数学教学以及如何进一步促进信息技术与初中数学教学深度融合还有待进一步研究。由国家部署的、教育部力推的“一师一优课,一课一名师”活动在增进中小学优质教育资源共建共享、信息技术与教育教学深度融合方面具有鲜明的典型意义和样本价值,且该活动的初衷和落脚点均在于促进信息技术与教学的深度融合。基于此,笔者以广西壮族自治区2019年度“一师一优课”平台中的初中数学优课课例为研究对象,以TPMK知识理论和SAMR模型为指导,采用课堂观察法、案例分析法等对相关课例进行分析,了解不同级别“优课”所呈现出的TPMK特征,得到以下几个方面的结论:1.不同级别优课课例呈现出的教师TPMK结构整体差异不大,但TPMK水平存在一定差异;在信息技术应用的取向上无明显差异,但在教学策略和教学方法上高级别优课更加关注学生在教学中的主体性。2.初中数学教师将信息技术融入初中数学课堂教学的评价均未达到重塑水平,主要集中于替代和增强层次。3.高级别初中数学优课中信息技术应用更为频繁,在信息技术应用水平相较低级别优课更高,多属于增强和修改水平,低级别初中数学优课多属于增强和替代水平。4.各级优课课例在整合技术的教学策略知识和整合技术的评价知识两大维度表现突出,在整合技术的教学策略知识维度主要表现为利用信息技术表征教学内容、处理学生错误,以及设置任务驱动等;在整合技术的评价知识维度主要利用信息了解学生的学习情况,利用信息技术对学生进行评价比较少。基于以上结论,为进一步推进信息技术与初中数学教学的深度融合,提升教师的TPMK水平,本研究提出相关建议:1.注重信息技术与数学课程融合的目标设定,深化利用信息技术深度融合初中数学教学的统领性观念,提升创新数学教学模式的意识。2.注重信息技术与数学课程教学内容的深度融合,更有效地发挥数学课程教学的育人功能。3.注重信息技术与数学课程教学手段和方式方法的深度融合,适应时代需求,进一步满足学生个性化学习的需要。4.注重信息技术与数学课程教学评价的深度融合,进行个性化评价,促进生成性教学。

刘俊含[5](2021)在《融合STEM教育的高中数学活动教学研究》文中研究表明STEM教育是在信息化时代的高速发展和社会对创新型人才的迫切需求下诞生和发展的。STEM教育作为一种以在实践中培养学生用跨学科知识与技能解决现实问题为目标的教育,最终目标是实现创新人才的高质量培养。我国新一轮高中数学课程改革是以提升学生数学应用能力、实践能力,培养全面发展的、能够满足社会发展需要的人才为导向的教学实践。新版高中数学课标也明确,数学教学要符合学生的个性发展并最终促进学生的全面发展。本文结合相关文献梳理分析STEM教育、活动教学的产生发展与研究现状。在国内外文献的基础上,探讨STEM教育的内涵、STEM教育与高中数学活动教学相融合的可行性。在“从做中学”理论、情境学习理论、赛耶模型和PBL学习模式的指导下,参考STEM教育在高中数学教材与教学中的现状分析结果,构建融合STEM教育的高中数学活动教学模型,讨论其对于转变高中数学课堂教学模式以及发展学生跨学科综合素养的有效性,这也是文章的创新点。将本研究提出的融合STEM教育的高中数学活动教学模型与Ge Geobra计算机平台共同应用于具体教学实践,促进数学知识的应用广度,转变师生数学教与学的方式。本文的研究方法是实验研究法、文献分析法、访谈法及问卷调查法。利用设计的教学案例进行教学实验后,将对照班和实验班学生的后测成绩对比,综合师生访谈情况,初步得出以下结论:基于数学课堂构建的融合STEM教育的高中数学活动教学模型,有助于转变现有高中数学课堂的教学模式,从而进一步提升学生应用数学解决现实生活中的问题的能力。通过对师生的访谈发现,该教学模型对于提高学生活动参与度、增强学生数学学习兴趣、促进学生跨学科知识运用水平等具有一定作用,并可为一线数学教师的STEM教学提供一定参考。本研究尚处于初期阶段,该教学模型的教学实践仍需进一步研究和完善,对于STEM教育与数学相融合的探索还将继续。

罗瑞[6](2021)在《小学数学教师研读教材的实践研究 ——以Z名师工作室为例》文中认为研读教材既是新课改的要求,也是教师专业化发展的要求,还是教师进行深度课堂教学的基础和前提,是备好课、上好课的核心环节。教师研读教材主要是对教材知识点进行钻研与表达,本研究为深入地剖析这一教学过程,将其分为两个阶段:对教材进行内化的“研”与外化的“读”,但其实“研”与“读”这两个过程是相辅相成的,“研”是“读”的基础,“读”是“研”的升华,二者相统一,即进行教材文本研读和课堂实践研读。本研究以KM市PL区Z名师工作室作为研究对象。主要研究四个方面的问题:第一,“数与代数”模块在小学数学教材中的编排与呈现。第二,小学数学教师研读教材的过程与方法。第三,小学数学教师在具体执教课题中如何研读教材。第四,多轮研读教材教学设计与实践的微循环过程对工作室、教师、学生产生的影响。综合运用文献法、访谈法、观察法以及实物分析法等研究方法,从每一次执教课题选定后进行的第一轮研读,到“课堂教学——干预——反思——修正”过程中的全员集体评课、研讨,从而为执教者提出下一轮的研读建议等一系列活动,研究者一直参与到此工作室对该课题的研究中。基于此研究,得出以下结论:第一,“数与代数”在四大领域中单元数和课时数占比都是最大,且“数的认识”和“数的运算”占比又高于其他部分,每部分都呈现螺旋式的编排,小学阶段深研此模块教材内容具有重要意义。第二,小学数学教师研读教材的过程与方法包括三原则、四愿景、四方法、四方式以及五步骤。(1)三条原则:注重间接经验与直接经验相结合、理论与实践相结合、继承与创新相结合的原则。(2)四个愿景:致力于完成学科教学任务、打造高效课堂;致力于全面、深入地把握教材文本传递的作用;致力于推进素质教育的实施、更好地服务学生;致力于提升教师专业素养、促进其职业发展。(3)四种方法:整体系统研读法、深度追问研读法、横纵对比研读法以及移情理解研读法。(4)四种方式:自我研读、交流研读、合作研读、指导研读。(5)五个步骤:以课标为基本依据,明晰课程总目标与学段目标的要求;“初研”教材整体结构;“再研”教材重点、难点和关键;“细研”主题图、例题和习题;“深研”教材编写意图。第三,“数与代数”模块五个研读课例从“研”到“读”的全过程。研读课例分析中由“研”到“读”四转换:教材文本转换为问题框架、问题框架转换为外部问题、外部问题转换为教学策略以及教学策略转换为教学活动。四环节:研、议、思、写。第四,此课题的开展过程对教师的影响。提升了教师研读教材的能力并且多轮微循环的研讨改进过程增进了教师间的沟通、交流以及合作的能力。对学生的影响。增强了学生对教学内容理解的深度,进而实现深度学习的目标。基于研究结论的启示:工作室课题的开展对提升教师研读水平具有重要意义,制度与策略是改善研读效果的重要基础,应持续、深入地进行研读教材实践研究以及课例开发。

孙贺[7](2021)在《课程思政视域下高中数学教学研究 ——以“函数模型的应用”专题为例》文中进行了进一步梳理“课程思政”对于落实立德树人根本任务,发挥好每门课程的育人功能,构建全员全程全方位育人格局,培养德智体美劳全面发展的社会主义建设者和接班人具有重要的作用。以高中“函数模型的应用”专题的教学内容为例,探索专题教学中融入课程思政的问题。在文献研究基础上,在数学教学中落实课程思政的目标,划分维度为数学品格、文化素养和价值理念三个一级指标,在每个一级指标下又设置四个二级指标;编制学生调查问卷、教师访谈提纲,对课程思政在高中数学课程中的实施情况展开调查;完成课程思政视域下的“函数模型的应用”专题教学设计与实践,分析对数学学习成绩的影响,并提出教学建议。研究表明:(1)编制的调查问卷折半信度、内容效度以及结构效度较好,可作为测量高中数学教学融入课程思政水平的调查工具;(2)实验班和对照班的学习成绩不存在显着性差异,即教学中落实课程思政目标不会对学生成绩产生消极影响;(3)参与教学实践的学生数学品格、文化素养、价值理念三个一级维度的水平均有所提升,其中数学品格的提升效果最明显,文化素养、价值引领的显着性效果依次减弱,育人效果得以彰显。践行课程思政理念,数学教学应做好以下工作:(1)丰富课程思政交流形式,提升教师思政育人意识;(2)以数学为基点联系社会热点,拓宽教师思政储备;(3)分阶段制定思政育人目标,学科间共享思政成果;(4)利用信息技术创新课堂形式,于互动中达到育人实效;(5)弘扬优秀文化与先进事迹,营造良好思政环境;(6)质性评价与定量评价相结合,细化思政考核方式。

魏晨曦[8](2021)在《基于“再创造”理论的初中数学活动课教学设计及案例研究》文中研究表明近些年来数学教育更加注重育人为本,注重学生的全面发展,数学活动课作为重要的教学模式之一更加受到重视。义务教育、高中新课标均对数学活动课程内容提出了相关要求。初中阶段是承接小学铺垫高中的重要阶段,在初中开展适当的数学活动课以达成教育目标显得尤为重要。我国教育部2019年也提让学生在教学中亲身感悟知识和突出培养学生创新创造能力。弗赖登塔尔提出的“再创造”理论提倡在学习过程中由学生自己将要学习的东西挖掘和创造出来。该理论常被作为数学活动课的理论基础,但却很少能在活动课中真正实现再创造。因此本研究基于“再创造”理论对初中数学活动课教学设计进行整体分析,使再创造活动在教学过程中整体体现。本研究首先采用文献分析法确定研究内容与研究方向,为研究的进行与实施打好前提基础。再采用调查问卷法与访谈法分别对研究学校的学生与教师进行调查,了解研究学校学生的数学学习习惯仍处于被动学习的状况、教师对数学活动课的作用认识清晰但由于实际情况影响开展不便。其次研究针对基于“再创造”理论初中数学活动教学设计的设计原则、教学目标、教学内容、教学过程以及教学评价五个方面进行整体分析。确定教学设计需要遵循的五个原则:教师主导性原则;学生主体性原则;数学化原则;再创造原则;层次性原则。结合“再创造”理论与三维目标明确整体教学目标,并分析活动内容与知识内容的纵横结构和内容重点与难度,构建教学评价指标。基于“再创造”理论设计实验型、探究型、建模型三类初中数学活动课,并对三个案例进行分析。发现基于“再创造”理论数学活动课具有注重学生为活动主体、活动多层次多样化、改变教学观与数学观的特点。总结基于“再创造”理论数学活动课的教学策略如下:(1)重视情境引入,问题“再产生”。(2)问题数学化,结论“再猜想”。(3)手脑并用做学合一,活动中“再创造”。(4)归纳总结与深层学习,知识经验“再应用”。

胡艳[9](2021)在《基于核心素养的主题教学研究 ——以初中方程为例》文中研究表明《普通高中数学课程标准(2017年版)》从利于学生不断发展的角度出发,依据数学学科的特点,凝练了数学学科的六大核心素养。在数学教学中如何培养学生的核心素养成为数学教育界的热点问题,受到了普遍关注。要落实培养学生核心素养的目标,无论是数学教学的内容,还是教学方法与手段都将随之改变,以适应课程标准的新要求。在内容上,《普通高中数学课程标准(2017年版)》将知识内容以主题形式呈现,使数学知识更具有系统性;在教学方法上,除传统的教学方法外,《普通高中数学课程标准(2017年版)解读》提出了主题教学这一新的教学模式,以改变单一的课时教学中将一个主题的知识分散呈现的方式。为此,本文从数学学科的核心素养以及主题教学这一新的教学模式为切入点,以初中阶段的方程为载体,探讨在核心素养的视角下的主题教学的相关问题。通过相关理论及文献的梳理与分析,对主题教学这一教学模式有了比较清晰的认识。不同于传统教学模式,主题教学注重知识的整体性、联系性,同时由于主题选择的多样性,为主题教学提供了更多的发展性、创造性与可行性,而这种教学方法为数学核心素养的培养提供了多样化的途径。利用教育实习的契机,通过对167位学生的问卷调查和15位一线教师教师的调查,了解到现实中学数学教学中核心素养的培养和主题教学方法的应用不尽如意。本论文从主题教学的特点、原则、目标和主题类型出发,探索了主题教学的设计步骤,再结合主题教学的五种教学主题,分别探索了每种教学主题如何与核心素养相融合的问题。在主题教学的设计步骤部分,从整体分析开始,由广到细,从整个教学内容细化到每一堂课的设计,主题选取的确定,知识内容、课程标准和核心素养的整体分析,再细化到课时安排,最后落实到每一堂课的教学设计,再通过评价反思,以期主题教学设计更加完善;在主题教学与核心素养的具体融合部分,本论文根据主题教学的五种不同类型的主题:现实生活化主题、问题焦点式主题、数学活动式主题、归纳演绎式主题、反馈矫正式主题,探索在实施这五类主题教学时如何来渗透数学核心素养。最后,进行教学案例的设计与分析,以期支撑核心素养与主题教学相融合的可行性。本文通过对主题教学的探索,寻求培养学生数学核心素养的具体途径,期望能为数学教学理论提供新的研究视角和数学教学实践提供可操作的案例,为数学教育的发展和中学数学教学提供有益的参考。

朱晨菲[10](2021)在《磨的是课,成的是人 ——数学评优课磨课活动的研究》文中研究表明磨课是为了课堂教学改进而进行的教师集体研究,是我国特色的教师专业发展活动。为了优秀课评比(俗称“赛课”)中参赛教师评优课的形成而展开的磨课是其中一种,它通常会在优秀课评比前系列化地进行多次。“磨的是课,成的是人”是许多一线教师经历系列评优课磨课后的共同感受。本研究以实践现象学为方法论,从过程性视角关注了该活动中“课”的改进和“人”的发展,研究问题有两个:1.在数学评优课磨课活动中,数学课怎样被改进?2.通过数学评优课磨课活动,参与教师有哪些专业发展?遵从方法论的引导,在充分论证了自身的研究条件、意向性和胜任力后,以研究者本人为工具实施了研究:首先,多来源地积累和感悟了他人(含文献)视域中的该活动。然后,兼有“局内人”和“局外人”角色,体验和洞见了两个系列的真实活动,整理并分析了采用多种研究方法获得的大量第一手资料。进而,经由反思,完成了与他人的“视域融合”,再“本质直观”出该活动中“课”如何改进、“人”有何发展的主题及其结构,并将各类资料灵活地按需融入不同主题。接着,对每个主题,采用现象学写作的方式,逐一阐释了研究结果,并对所有具体结果进行了整体梳理。对第一个研究问题:优秀课评比的规则使得参赛教师提前准备关于参赛课题的教学具备可能,而面向未知学情实施优质教学则是参赛教师执教现场评优课时的主要挑战。教师集体为了支持参赛教师有效应对挑战而展开系列化评优课磨课活动。“以发现问题为目的观察试教”是每次磨课的开端,分为“依据学生表现发现关键事件”和“在分析关键事件中提出问题”。“理解数学知识的境脉与本质”总被审慎地对待,包括“探究教材的编写逻辑与意图”、“从其他版本教材里获得启发”、“在数学知识体系中寻根究底”。“基于经验推理把握未知学情”是讨论的基础,先需“挖掘不同学情的特点与需求”,再“结合潜在难点制定教学目标”。“编排创意的课堂结构与任务”尤为重要,包括“建立简洁且深刻的课堂结构”、“设计合理创新的活动与问题”、“把握课堂容量与时间的平衡”。“设计灵活的启发时机与策略”时时发生,在“推测学生的思维方式与进程”基础上,会“预设弹性化的适时启发策略”和“规划即时性教学决策的方向”。“‘因师施磨’迭代推进问题解决”是系列磨课的发展趋势,体现为“注重教师的特质和自我建构”、“试教不同学情调适教学实施”。在系列磨课中,教师们通过一以贯之的各显所长、合作交流、协商共建、观点融合,逐渐生成多角度渐进性理解和多样化演进性建议,支持参赛教师评优课教学设计的不断完善和面向未知学情优质教学的逐步实现。对第二个研究问题:无论是短期或常年参与,经历了该活动后,参赛教师、教研员、专家教师、研究者都会产生各自的专业发展。参赛教师的发展表现在:即时判断能力达至“看得到”、即时决策能力达至“接得住”、教研理解能力达至“听得懂”、教研表达能力达至“说得出”、教研反思能力达至“想得清”、教学再设计能力达至“改得了”、研究性思维的整体优化上。教研员的发展表现在:理解教师能力的精深、教学设计能力的精进、磨课组织能力的精湛、研究性思维的持续完善上。专家教师的发展表现在:教学创新能力的改良、指导教师方法的改进、教研合作意识的改善、研究性思维的不断突破上。研究者的发展表现在作为“局内人”时数学教学观念的变革、有效备课方法的积累、卓越教学意愿的激发、教研合作意识的改良,作为“局外人”时研究方法及其实施、研究结果及其呈现、理解教育实践研究、理解教师专业发展四方面的发展,以及研究性思维的融合发展上。整体地看,以上方面的发展表现和程度都具有相对性,它们的产生均与各类教师更加善于理解他人、善于理解自己以及研究性思维的成长有关,对各类教师长期的专业发展都会形成积极影响。最后,研究者基于四个理由,提出:在现阶段,对评优课磨课活动的研究是一项“尚在起点的探索”。

二、数学教学中如何实施“创新教育”(论文开题报告)

(1)论文研究背景及目的

此处内容要求:

首先简单简介论文所研究问题的基本概念和背景,再而简单明了地指出论文所要研究解决的具体问题,并提出你的论文准备的观点或解决方法。

写法范例:

本文主要提出一款精简64位RISC处理器存储管理单元结构并详细分析其设计过程。在该MMU结构中,TLB采用叁个分离的TLB,TLB采用基于内容查找的相联存储器并行查找,支持粗粒度为64KB和细粒度为4KB两种页面大小,采用多级分层页表结构映射地址空间,并详细论述了四级页表转换过程,TLB结构组织等。该MMU结构将作为该处理器存储系统实现的一个重要组成部分。

(2)本文研究方法

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。

观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。

实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。

文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。

实证研究法:依据现有的科学理论和实践的需要提出设计。

定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。

定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。

跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。

功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。

模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

三、数学教学中如何实施“创新教育”(论文提纲范文)

(1)“课程思政”视域下面向高中美术生的数学教学设计研究 ——以“不等式”为例(论文提纲范文)

摘要
Abstract
第一章 绪论
    1.1 选题背景
    1.2 研究意义
    1.3 研究问题
    1.4 研究创新点
    1.5 核心概念界定
    1.6 论文框架
第二章 文献综述与理论基础
    2.1 文献综述
    2.2 理论基础
第三章 研究设计
    3.1 研究假设
    3.2 研究对象
    3.3 研究方法
    3.4 研究工具
    3.5 研究思路
    3.6 需要注意的问题
第四章 高中美术生思想状况调查结果与“课程思政”切入点模型
    4.1 问卷调查实施
    4.2 数据统计与分析
    4.3 调查结果与“课程思政”切入点模型的关系
    4.4 “课程思政”切入点模型
第五章 “课程思政”数学教学设计流程
    5.1 “课程思政”数学教学设计原则
    5.2 “课程思政”数学教学设计流程
    5.3 等式性质与不等式性质示例1
    5.4 基本不等式示例2
第六章 “课程思政”数学教学实践与评价
    6.1 二次函数与一元二次方程、不等式第一课时案例1
    6.2 二次函数与一元二次方程、不等式第二课时案例2
    6.3 “课程思政”数学教学效果评价
第七章 研究结论、建议与展望
    7.1 研究结论
    7.2 研究建议
    7.3 研究不足
    7.4 研究展望
参考文献
附录
致谢

(2)小学高年级数学生本教学现状及对策研究 ——以M地区为例(论文提纲范文)

摘要
abstract
绪论
    第一节 研究背景
    第二节 国内外研究现状
        一、国外研究现状
        二、国内研究现状
    第三节 研究思路和方法
        一、研究思路
        二、研究方法
    第四节 研究目的意义
        一、研究目的
        二、研究意义
第一章 核心概念界定和理论基础
    第一节 核心概念界定
        一、小学高年级
        二、生本教学
        三、小学数学生本教学
    第二节 理论基础
        一、人本主义学习理论
        二、生本教育理论
        三、建构主义理论
第二章 小学高年级数学生本教学的现状调查
    第一节 调查设计
        一、调查对象
        二、问卷编制及内容
        三、问卷调查的实施
    第二节 小学高年级数学生本教学调查结果分析
        一、小学高年级数学教师对生本教学的认识情况
        二、小学高年级数学生本教学的实施情况
        三、生本教学评价情况
        四、小学高年级数学生本教学效果
        五、学校对生本教学的组织与管理情况
第三章 小学高年级数学生本教学存在的问题
    第一节 小学高年级数学教师对生本教学认识方面的问题
        一、教师对生本教学内涵认识不深入
        二、教师对生本教学实施策略缺少系统的认知
    第二节 小学高年级数学生本教学实施方面的问题
        一、前置性作业布置频率不高
        二、合作教学策略运用不当
        三、教学未突出学生主体地位
    第三节 生本教学评价方面的问题
        一、忽视学生学习过程评价
        二、缺少学生自主评价
    第四节 学校对生本教学组织与管理方面的问题
        一、生本教学培训和教研活动开展频率低
        二、生本教学培训方式的开放性不足
第四章 小学高年级数学生本教学的改进对策
    第一节 学校方面
        一、学校对教师进行生本培训,深入教师认识
        二、学校开展生本教研活动,深入教师认识
        三、学校聘请专家对教师进行指导
        四、学校建立生本教学激励制度
    第二节 教师方面
        一、提高前置性作业布置频率
        二、恰当运用合作教学策略
        三、教学突出学生主体地位
        四、注重学生学习过程评价
        五、注重引导学生自评
结语
参考文献
附录
    附录A 生本教学调查问卷(教师卷)
    附录B 生本教学调查问卷(学生卷)
致谢
攻读学位期间发表的学术论文

(3)“课程思政”视域下高中数学教学设计研究 ——以预备知识主题为例(论文提纲范文)

摘要
ABSTRACT
第一章 绪论
    1.1 问题提出
    1.2 研究意义
    1.3 研究内容、思路与方法
    1.4 论文结构及创新点
第二章 文献综述、核心概念界定及理论基础
    2.1 文献综述
    2.2 核心概念界定
    2.3 理论基础
第三章 研究设计
    3.1 研究假设
    3.2 研究工具
    3.3 研究对象
    3.4 研究过程
第四章 调查研究
    4.1 教师问卷调查
    4.2 教师访谈调查
第五章 教学设计
    5.1 课程思政视域下教学设计理念
    5.2 预备知识主题教学内容设计
    5.3 教学设计示例
第六章 实践研究
    6.1 实践对象选取
    6.2 实践过程分析
    6.3 实践效果分析
    6.4 实践总结
第七章 课程思政视域下高中数学教学设计的原则与方法
    7.1 课程思政视域下高中数学教学设计的原则
    7.2 课程思政视域下高中数学教学设计的方法
第八章 结论、建议与展望
    8.1 结论
    8.2 建议
    8.3 展望
参考文献
附录1 教师调查问卷
附录2 教师访谈提纲
附录3 学生调查问卷
致谢

(4)TPMK视角下信息技术深度融合初中数学教学的视频课例研究 ——以2019年广西“一师一优课”为例(论文提纲范文)

中文摘要
abstract
第1章 绪论
    一、研究背景与问题
        (一)研究背景
        (二)研究问题
    二、研究目的与意义
        (一)研究目的
        (二)研究意义
第2章 核心概念界定及研究综述
    一、相关概念界定
        (一)信息技术
        (二)信息技术深度融合学科教学
        (三)视频课例研究
    二、研究综述
        (一)视频课例研究综述
        (二)信息技术融合数学学科教学研究综述
        (三)文献述评及启示
第3章 研究设计
    一、相关理论基础
        (一)TPMK理论
        (二)SAMR模型理论
        (三)教学结构理论
        (四)交互影响距离理论
    二、研究对象的选取与确定
        (一)课例选取说明
        (二)视频课例的整理分类
    三、研究工具
        (一)编码体系
        (二)编码分析软件
    四、研究方法
    五、研究思路
第4章 编码系统的制定与实施
    一、《初中数学教师TPMK课堂编码表》设计依据
        (一)初中阶段的数学教育
        (二)《中小学教师信息技术应用能力标准》分析
    二、《初中数学教师TPMK课堂编码表》的制定
    三、《初中数学教师TPMK课堂编码表》的实施
    四、信效度检验
第5章 广西初中数学优课课例分析与结果
    一、广西初中数学课例视频教学资源数量情况分析
        (一)平台中不同级别优课教学资源数量情况分析
        (二)不同教学模块教学资源使用情况分析
    二、基于TPMK视角的信息技术融合初中数学教学情况分析
        (一)整合技术的初中数学教学理念分析
        (二)课堂观察的实施结果与分析
    三、部级优课课例《信息技术应用——探究旋转的性质》分析
        (一)教学路线图
        (二)《信息技术应用-探索旋转的性质》教师TPMK行为表现统计分析
        (三)《信息技术应用—探索旋转的性质》教学过程局部分析
        (四)小结与启示
第6章 研究结论与反思
    一、研究结论
        (一)教学资源使用情况方面
        (二)不同级别优课教师的TPMK特征方面
    二、研究建议
    三、研究不足与反思
    四、研究展望
参考文献
附录1 初中数学教师 TPACK 观察记录表
附录2 探索旋转的性质(第一课时)
攻读硕士学位期间发表的论文
致谢

(5)融合STEM教育的高中数学活动教学研究(论文提纲范文)

摘要
Abstract
1 绪论
    1.1 研究背景
        1.1.1 我国创新人才培养的需要
        1.1.2 数学课程改革的必然趋势
        1.1.3 学生主体地位的充分诠释
    1.2 研究内容
    1.3 研究意义
        1.3.1 理论意义
        1.3.2 实践意义
    1.4 研究方法
        1.4.1 文献分析法
        1.4.2 实验研究法
        1.4.3 问卷调查法
        1.4.4 访谈法
    1.5 研究思路
    1.6 本研究的创新性
2 研究综述
    2.1 关于STEM教育的研究综述
        2.1.1 STEM教育的国外研究现状
        2.1.2 STEM教育的国内研究现状
    2.2 关于活动教学的研究综述
        2.2.1 活动教学的产生与发展
        2.2.2 活动教学的研究现状
    2.3 融合STEM教育与高中数学教学的研究现状
    2.4 小结
3 相关概念界定及理论基础
    3.1 相关概念界定
        3.1.1 STEM教育
        3.1.2 数学活动教学
    3.2 理论基础
        3.2.1 杜威“从做中学”理论
        3.2.2 情境学习理论
        3.2.3 赛耶模型
        3.2.4 PBL学习模式
4 STEM教育在高中数学教材与教学中的现状分析
    4.1 STEM教育在人教B版高中数学教材中的渗透情况
        4.1.1 教材总体分布分析
        4.1.2 专题内容分析
        4.1.3 结论与建议
    4.2 STEM教育在高中数学教学中的现状调查
        4.2.1 调查目的
        4.2.2 调查对象
        4.2.3 调查方法
        4.2.4 调查过程
        4.2.5 调查结果分析
        4.2.6 小结
5 融合STEM教育的高中数学活动教学模型
    5.1 STEM教育与高中数学活动教学相融合的可行性分析
    5.2 融合STEM教育的高中数学活动教学模型的构建原则
        5.2.1 整合性原则
        5.2.2 情境性原则
        5.2.3 实践性原则
        5.2.4 创造性原则
    5.3 融合STEM教育的高中数学活动教学模型的构建
        5.3.1 融合STEM教育的高中数学活动教学模型的构想
        5.3.2 融合STEM教育的高中数学活动教学模型
6 融合STEM教育的高中数学活动教学的案例设计
    6.1 案例设计一:“身高增长的秘密”
        6.1.1 教材内容分析
        6.1.2 学情分析
        6.1.3 教学目标与重难点
        6.1.4 教学方法
        6.1.5 教学手段
        6.1.6 教学过程设计
        6.1.7 教学评价设计
    6.2 案例设计二:“测量我们学校的‘珠峰’”
        6.2.1 教材内容分析
        6.2.2 学情分析
        6.2.3 教学目标与重难点
        6.2.4 教学方法
        6.2.5 教学手段
        6.2.6 教学过程设计
        6.2.7 教学评价设计
7 融合STEM教育的高中数学活动教学的实验研究
    7.1 实验准备
        7.1.1 实验目的
        7.1.2 实验材料及工具
        7.1.3 实验对象
        7.1.4 实验变量
        7.1.5 实验假设
    7.2 实验过程
        7.2.1 实验流程
        7.2.2 教学过程
    7.3 实验结果与分析
        7.3.1 测试卷的设计与实施效果
        7.3.2 学生访谈问题的设计与实施效果
        7.3.3 教师访谈问题的设计与实施效果
        7.3.4 小结
8 总结与展望
    8.1 研究总结
    8.2 研究不足
    8.3 研究展望
参考文献
附录A “STEM教育在高中数学教学中的开展现状”调查问卷
附录B “STEM教育在高中数学教学中的开展现状”的教师访谈提纲
附录C “身高增长的秘密”学生测试卷
附录D “身高增长的秘密”学生访谈提纲
附录E “身高增长的秘密”教师访谈提纲
附录F “测量我们学校的’珠峰’”测量课题报告表
附录G 案例一学生身高数据
攻读硕士学位期间发表学术论文情况
致谢

(6)小学数学教师研读教材的实践研究 ——以Z名师工作室为例(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 研究背景
    1.2 核心概念界定与相关概念辨析
    1.3 研究的理论基础与模式
    1.4 研究的内容
    1.5 研究的目的和意义
    1.6 研究的思路
    1.7 论文的结构
第2章 文献综述
    2.1 课程理解的相关研究
        2.1.1 教师课程理解的内涵
        2.1.2 教师课程理解的基本内容
        2.1.3 教师课程理解的影响因素
    2.2 教材理解的相关研究
        2.2.1 教材理解重要性
        2.2.2 教材使用
    2.3 研读教材的相关研究
        2.3.1 研读教材的重要性
        2.3.2 研读教材的内容
        2.3.3 研读教材的视角
        2.3.4 研读教材的方法
        2.3.5 研读教材的策略
    2.4 文献评述
第3章 研究设计
    3.1 研究对象
    3.2 研究工具
    3.3 研究方法
    3.4 资料收集与整理
    3.5 研究的伦理
    3.6 小结
第4章 小学数学教材“数与代数”模块的内容分析
    4.1 研读“数与代数”模块的总体设计
        4.1.1“数与代数”在四大模块中单元数的分布情况
        4.1.2“数与代数”在四大模块中课时数的分布情况
        4.1.3“数与代数”模块知识结构体系的呈现
        4.1.4“数与代数”模块新知识例题数分布情况
        4.1.5“数与代数”模块单元、节的基本结构
    4.2“数的认识”部分教学内容分析
        4.2.1 研读教材知识结构体系
        4.2.2 研读教学内容间的联系与衔接
    4.3“数的运算”部分教学内容分析
        4.3.1 研读教材知识结构体系
        4.3.2 研读教学内容间的联系与衔接
    4.4“常见的量”部分教学内容分析
        4.4.1 研读教材知识结构体系
        4.4.2 研读教学内容间的联系与衔接
    4.5“探索规律”部分教学内容分析
    4.6“代数初步”部分教学内容分析
        4.6.1 研读“式与方程”部分教材知识结构
        4.6.2 研读“正、反比例”部分教材知识结构
    4.7 研读“数与代数”模块教学内容的特点
        4.7.1 关注生活情境的运用
        4.7.2 关注学生数感的培养
        4.7.3 重视算理与算法的联系
        4.7.4 重视估算意识与能力的培养
    4.8 小结
第5章 小学数学教师研读教材的过程与方法
    5.1 小学数学教师研读教材的愿景
        5.1.1 致力于完成学科教学任务、打造高效课堂
        5.1.2 致力于全面、深入地把握教材文本传递的作用
        5.1.3 致力于推进素质教育的实施、更好地服务学生
        5.1.4 致力于提升教师专业素养、促进其职业发展
    5.2 小学数学教师研读教材时应遵循的原则
        5.2.1 理论与实践相结合的原则
        5.2.2 间接经验与直接经验相结合的原则
        5.2.3 继承与创新相结合的原则
    5.3 小学数学教师研读教材的方法
        5.3.1 整体系统研读法
        5.3.2 深度追问研读法
        5.3.3 横纵对比研读法
        5.3.4 移情理解研读法
    5.4 小学数学教师“研”教材文本的步骤
        5.4.1 课标为据,明晰要求
        5.4.2“初研”教材整体结构
        5.4.3“再研”教材重点、难点和关键
        5.4.4“细研”主题图、例题和习题
        5.4.5“深研”教材编写意图
    5.5 小学数学教师研读教材的方式
        5.5.1 自我研读
        5.5.2 交流研读
        5.5.3 合作研读
        5.5.4 指导研读
    5.6 小学数学教师研读教材前后的教育教学效果
    5.7 小结
第6章 小学数学教师研读教材的课例分析
    6.1 研读教材课例的选取
        6.1.1 内容层次
        6.1.2 水平层次
        6.1.3 结构层次
    6.2“数的认识”部分课例分析——还原数学知识的本质原理
        6.2.1 执教教师、学生与教学主题
        6.2.2 课标、教材、教师教学用书中的“分数的初步认识”
        6.2.3 教师内化教材“研”的过程
        6.2.4 教师外化教材“读”的过程
    6.3“数的运算”部分课例分析——还原数学知识的本质原理
        6.3.1 执教教师、学生与教学主题
        6.3.2 课标、教材、教师教学用书中的“单价、数量和总价”
        6.3.3 教师内化教材“研”的过程
        6.3.4 教师外化教材“读”的过程
    6.4“常见的量”部分课例分析——追溯数学知识的形成过程
        6.4.1 执教教师、学生与教学主题
        6.4.2 课标、教材、教师教学用书中的“认识钟表”
        6.4.3 教师内化教材“研”的过程
        6.4.4 教师外化教材“读”的过程
    6.5“探索规律”部分课例分析——丰富数学知识的表现形式
        6.5.1 执教教师、学生与教学主题
        6.5.2 课标、教材、教师教学用书中的“数学广角——数与形”
        6.5.3 教师内化教材“研”的过程
        6.5.4 教师外化教材“读”的过程
    6.6“代数初步”部分课例分析——追溯数学知识的形成过程
        6.6.1 执教教师、学生与教学主题
        6.6.2 课标、教材、教师教学用书中的“用字母表示数”
        6.6.3 教师内化教材“研”的过程
        6.6.4 教师外化教材“读”的过程
    6.7“数与代数”模块各教学课例研读设计的形成过程
        6.7.1 各教学课例研读设计的形成过程
        6.7.2 微循环研究过程的作用
第7章 研究的结论与反思
    7.1 研究的结论
    7.2 基于研究结论的启示
    7.3 研究的反思
    7.4 结束语
参考文献
附录
攻读学位期间发表的论文和研究成果
致谢

(7)课程思政视域下高中数学教学研究 ——以“函数模型的应用”专题为例(论文提纲范文)

摘要
ABSTRACT
第一章 绪论
    1.1 问题的提出
    1.2 核心概念界定
        1.2.1 课程思政
        1.2.2 函数模型
    1.3 研究目的与意义
        1.3.1 研究目的
        1.3.2 理论意义
        1.3.3 实践意义
    1.4 研究思路与方法
        1.4.1 研究思路
        1.4.2 研究方法
    1.5 研究重点、难点及创新点
        1.5.1 研究重点
        1.5.2 研究难点
        1.5.3 研究创新点
    1.6 论文结构
第二章 文献综述、理论基础与框架
    2.1 文献综述
        2.1.1“课程思政”的研究现状
        2.1.2“课程思政”在数学教学中的体现
        2.1.3 函数模型的教学价值
        2.1.4 函数模型的教学设计
    2.2 理论基础
        2.2.1 马克思关于人的全面发展理论
        2.2.2 认知负荷理论
    2.3 理论框架
        2.3.1 课程思政视域下高中数学教学研究理论框架
        2.3.2 高中数学课程思政维度划分的理论框架
第二章 研究设计
    3.1 研究假设
    3.2 研究对象
    3.3 研究工具
        3.3.1 教师访谈提纲
        3.3.2 学生调查问卷
        3.3.3 学生前测试卷
        3.3.4 学生后测试卷
        3.3.5 学生后测问卷
    3.4 数据处理
第四章 “函数模型的应用”专题教学设计
    4.1 教学设计目标
    4.2 教学设计构思
    4.3 教学设计原则
    4.4 教学时间安排与进度
    4.5 教学设计示例
第五章 “函数模型的应用”专题教学问卷与访谈分析
    5.1 课程思政的融入对学生成绩的影响结果分析
    5.2 课程思政视域下高中数学教学情况的总体特征
    5.3 课程思政视域下专题教学的前后差异比较分析
        5.3.1 前后测总体数据的配对样本t检验分析
        5.3.2 数学品格维度的前后测数据的配对样本t检验分析
        5.3.3 文化素养维度的前后测数据的配对样本t检验分析
        5.3.4 价值理念维度的前后测数据的配对样本t检验分析
    5.4 教师访谈结果分析
第六章 讨论、结论与建议
    6.1 讨论
        6.1.1 关于课程思政的融入对学生成绩影响的讨论
        6.1.2 关于专题教学整体实践效果的讨论
        6.1.3 关于课程思政各个子维度的实践效果比较研究
    6.2 结论
    6.3 建议
        6.3.1 丰富课程思政交流形式,提升教师思政育人意识
        6.3.2 以数学为基点联系社会热点,拓宽教师思政储备
        6.3.3 分阶段制定思政育人目标,学科间共享思政成果
        6.3.4 利用信息技术创新课堂形式,于互动中达到育人实效
        6.3.5 弘扬优秀文化与先进事迹,营造良好思政环境
        6.3.6 质性评价与定量评价相结合,细化思政考核方式
    6.4 不足与展望
参考文献
附录
    附录一 教师访谈提纲(教学设计前)
    附录二 教师访谈提纲(教学实践后)
    附录三 学生预测试调查问卷(第一版)
    附录四 学生预测试调查问卷(第二版)
    附录五 学生正式前测调查问卷
    附录六 学生正式后测调查问卷
    附录七 专家意见表
    附录八 专家评价表
    附录九 学生后测试题
致谢

(8)基于“再创造”理论的初中数学活动课教学设计及案例研究(论文提纲范文)

摘要
Abstract
第1章 绪言
    1.1 研究背景
        1.1.1 教育部对“中小学活动教学”的要求
        1.1.2 《课标》对“数学活动”的内容及要求
        1.1.3 教材中“数学活动”的地位
        1.1.4 初中“数学活动课”的必要性
        1.1.5 “再创造”理论的背景
    1.2 研究的内容及意义
        1.2.1 研究内容
        1.2.2 研究意义
    1.3 核心概念界定
        1.3.1 数学活动
        1.3.2 数学活动课
        1.3.3 “再创造”活动教学
    1.4 研究的思路
        1.4.1 研究技术路线
        1.4.2 研究计划
第2章 文献综述
    2.1 文献搜集与分析
    2.2 国外研究现状
    2.3 国内的研究现状
    2.4 文献评述
    2.5 小结
第3章 研究设计
    3.1 研究目的
    3.2 研究的方法
    3.3 研究对象的选取
        3.3.1 学校的选取
        3.3.2 学生与教师的选取
    3.4 研究工具
        3.4.1 问卷的设计
        3.4.2 访谈提纲的设计
    3.5 研究理论基础
        3.5.1 做中学
        3.5.2 建构主义理论
        3.5.3 多元智能理论
        3.5.4 “再创造”理论
    3.6 小结
第4章 数学活动课实施情况调查研究
    4.1 教师访谈分析
        4.1.1 教师访谈记录编码
        4.1.2 教师访谈记录分析
    4.2 学生数学活动调查分析
        4.2.1 问卷信效度分析
        4.2.2 调查过程与数据编码
        4.2.3 学生调查结果分析
    4.3 数学活动课实施情况调查结论
    4.4 小结
第5章 基于“再创造”理论的数学活动课教学设计分析
    5.1 基于“再创造”理论数学活动课教学设计原则
        5.1.1 教师主导性原则
        5.1.2 学生主体性原则
        5.1.3 数学化原则
        5.1.4 再创造原则
        5.1.5 层次性原则
    5.2 基于“再创造”理论数学活动课教学目标分析
    5.3 基于“再创造”理论数学活动课教学内容分析
        5.3.1 教材内容分析
        5.3.2 知识结构分析
        5.3.3 重难点分析
    5.4 基于“再创造”理论数学活动教学过程设计分析
    5.5 教学评价设计
        5.5.1 教学设计视角的评价指标建构
        5.5.2 评价体系标准编码
    5.6 小结
第6章 基于“再创造”理论的数学活动课案例分析
    6.1 实验型活动教学案例分析
        6.1.1 展开与折叠教学案例
        6.1.2 教学案例分析
        6.1.3 教学评价
    6.2 建模型活动教学案例分析
        6.2.1 一次函数的应用教学案例
        6.2.2 教学案例分析
        6.2.3 教学评价
    6.3 探究型活动教学案例分析
        6.3.1 用频率估计概率教学案例
        6.3.2 教学案例分析
        6.3.3 教学评价
    6.4 课后访谈分析
        6.4.1 学生访谈
        6.4.2 教师访谈
    6.5 小结
第7章 研究结论与不足
    7.1 研究的主要结论
        7.1.1 基于“再创造”理论数学活动课特点
        7.1.2 基于“再创造”理论数学活动教学策略
    7.2 研究的反思与不足
    7.3 结束语
参考文献
攻读学位期间发表的学术论文和研究成果
附录 学生调查问卷
致谢

(9)基于核心素养的主题教学研究 ——以初中方程为例(论文提纲范文)

摘要
Abstract
1 绪论
    1.1 研究背景
        1.1.1 数学课程标准的基本理念
        1.1.2 学习论和教学论的发展
        1.1.3 新课程改革背景下学生核心素养的培养
        1.1.4 数学教学中存在的不足
    1.2 研究意义
        1.2.1 理论意义
        1.2.2 实践意义
    1.3 研究思路及方法
2 文献综述
    2.1 核心素养
        2.1.1 国外研究
        2.1.2 国内研究
        2.1.3 数学核心素养相关研究
    2.2 主题教学
        2.2.1 国外研究
        2.2.2 国内研究
3 相关概念界定及理论基础
    3.1 相关概念界定
        3.1.1 核心素养
        3.1.2 数学核心素养
        3.1.3 主题教学
    3.2 理论基础
        3.2.1 建构主义理论
        3.2.2 学习迁移理论
        3.2.3 弗赖登塔尔的数学教育理论
4 初中数学课堂教学的现状调查与分析
    4.1 调查目的和对象
        4.1.1 调查目的
        4.1.2 调查对象
    4.2 实施过程
    4.3 结果与分析
        4.3.1 学生调查问卷分析
        4.3.2 教师调查问卷分析
    4.4 分析总结
5 基于核心素养的主题教学分析
    5.1 一般概述
        5.1.1 主题教学的特点
        5.1.2 主题教学的原则
        5.1.3 主题教学的教学目标
        5.1.4 主题教学的教学主题
    5.2 教学设计步骤
        5.2.1 主题选取
        5.2.2 要素分析
        5.2.3 课时安排
        5.2.4 教学设计
        5.2.5 评价反思
    5.3 主题教学与核心素养
        5.3.1 现实生活化主题
        5.3.2 问题焦点式主题
        5.3.3 数学活动式主题
        5.3.4 归纳演绎式主题
        5.3.5 反馈矫正式主题
6 基于核心素养的主题教学案例
7 结论与展望
    7.1 研究结论
    7.2 不足与展望
参考文献
附录
    附录1 学生调查问卷
    附录2 教师调查问卷
攻读学位期间发表的论文与研究成果清单
致谢

(10)磨的是课,成的是人 ——数学评优课磨课活动的研究(论文提纲范文)

摘要
Abstract
第1章 绪论
    1.1 缘起
        1.1.1 几个机缘
        1.1.2 初步推断
    1.2 研究问题
        1.2.1 研究问题的孕育
        1.2.2 研究问题的确立
    1.3 概念界定
        1.3.1 数学评优课
        1.3.2 数学评优课磨课活动
    1.4 研究背景
        1.4.1 通过优秀课评比推动教师发展:中国特色待阐扬
        1.4.2 建设高质量基础教育教师队伍:教育发展新征程
        1.4.3 数学教师专业发展的实践导向:相关研究正蓬勃
    1.5 研究意义
        1.5.1 增益中国数学教育教研的特色
        1.5.2 丰富数学教师专业发展的研究
        1.5.3 引导数学教师备好课、上好课
        1.5.4 支持教研员有效组织教研指导
第2章 文献述评
    2.1 文献主题的设计与组织
    2.2 关于数学评优课磨课活动
        2.2.1 优质数学课堂特征维度
        2.2.2 已有研究的内容与方法
    2.3 关于数学教师专业发展
        2.3.1 数学教师的专业素养
        2.3.2 数学教师的专业学习
    2.4 关于数学课例研究
        2.4.1 数学课例研究的过程与特点
        2.4.2 数学课例研究对教师专业发展的影响
第3章 研究设计
    3.1 方法论:实践现象学
        3.1.1 本研究的基本定位和范式取向
        3.1.2 研究者的人际关系和自身特点
        3.1.3 方法论的规划选取和基本含义
        3.1.4 来自实践现象学的多层次启发
    3.2 研究思路与过程
        3.2.1 积累与感悟已有认识
        3.2.2 体验与洞见真实活动
        3.2.3 反思与直观活动本质
    3.3 研究方法与对象
        3.3.1 观察法
        3.3.2 访谈法
        3.3.3 出声思维
        3.3.4 自我反思
    3.4 资料整理与分析
        3.4.1 资料的汇总与归类
        3.4.2 资料的理解与反思
        3.4.3 资料的提炼与呈现
    3.5 研究效度与伦理
        3.5.1 研究的效度
        3.5.2 研究的伦理
    3.6 论文结构与写法
        3.6.1 论文的结构
        3.6.2 论文的写法
第4章 数学评优课磨课活动中“课”的改进
    4.1 以发现问题为目的观察试教
        4.1.1 依据学生表现发现关键事件
        4.1.2 在分析关键事件中提出问题
        4.1.3 小结:“烤”
    4.2 理解数学知识的境脉与本质
        4.2.1 探究教材的编写逻辑与意图
        4.2.2 从其他版本教材里获得启发
        4.2.3 在数学知识体系中寻根究底
        4.2.4 小结:“吃橘子”
    4.3 基于经验推理把握未知学情
        4.3.1 挖掘不同学情的特点与需求
        4.3.2 结合潜在难点制定教学目标
        4.3.3 小结:“境与径”
    4.4 编排创意的课堂结构与任务
        4.4.1 建立简洁且深刻的课堂结构
        4.4.2 设计合理创新的活动与问题
        4.4.3 把握课堂容量与时间的平衡
        4.4.4 小结:“神来之笔”
    4.5 设计灵活的启发时机与策略
        4.5.1 推测学生的思维方式与进程
        4.5.2 预设弹性化的适时启发策略
        4.5.3 规划即时性教学决策的方向
        4.5.4 小结:“出彩”
    4.6 “因师施磨”迭代推进问题解决
        4.6.1 注重教师的特质和自我建构
        4.6.2 试教不同学情调适教学实施
        4.6.3 小结:“陪伴”
    4.7 本章总结
第5章 数学评优课磨课活动中“人”的发展
    5.1 参赛教师的主要发展
        5.1.1 课堂教学中的能力发展
        5.1.2 磨课活动中的能力发展
        5.1.3 磨后反思中的能力发展
        5.1.4 研究性思维的整体优化
        5.1.5 小结:“名师之智”
    5.2 教研员的主要发展
        5.2.1 理解教师能力的精深
        5.2.2 教学设计能力的精进
        5.2.3 磨课组织能力的精湛
        5.2.4 研究性思维的持续完善
        5.2.5 小结:“教研之慧”
    5.3 专家教师的主要发展
        5.3.1 教学创新能力的改良
        5.3.2 指导教师方法的改进
        5.3.3 教研合作意识的改善
        5.3.4 研究性思维的不断突破
        5.3.5 小结:“专家之谋”
    5.4 研究者的主要发展
        5.4.1 作为“局内人”的诸多发展
        5.4.2 作为“局外人”的诸多发展
        5.4.3 研究性思维的融合发展
        5.4.4 小结:“科研之思”
    5.5 本章总结
第6章 结论与启示
    6.1 结论
        6.1.1 关于数学评优课磨课活动中“课”的改进
        6.1.2 关于数学评优课磨课活动中“人”的发展
    6.2 启示:“尚在起点的探索”
参考文献
    中文文献
    英文文献
附录1 《二次函数的图像和性质(整体建构)》现场评优课教学设计
附录2 《中心对称与中心对称图形(第一课时)》现场评优课教学设计
作者简历及在学期间所取得的科研成果
致谢:行的是路,知的是情

四、数学教学中如何实施“创新教育”(论文参考文献)

  • [1]“课程思政”视域下面向高中美术生的数学教学设计研究 ——以“不等式”为例[D]. 李兆敏. 天津师范大学, 2021(09)
  • [2]小学高年级数学生本教学现状及对策研究 ——以M地区为例[D]. 郑琳湘. 牡丹江师范学院, 2021(08)
  • [3]“课程思政”视域下高中数学教学设计研究 ——以预备知识主题为例[D]. 焦继超. 天津师范大学, 2021(09)
  • [4]TPMK视角下信息技术深度融合初中数学教学的视频课例研究 ——以2019年广西“一师一优课”为例[D]. 康雯. 广西师范大学, 2021(09)
  • [5]融合STEM教育的高中数学活动教学研究[D]. 刘俊含. 辽宁师范大学, 2021(08)
  • [6]小学数学教师研读教材的实践研究 ——以Z名师工作室为例[D]. 罗瑞. 云南师范大学, 2021(08)
  • [7]课程思政视域下高中数学教学研究 ——以“函数模型的应用”专题为例[D]. 孙贺. 天津师范大学, 2021(10)
  • [8]基于“再创造”理论的初中数学活动课教学设计及案例研究[D]. 魏晨曦. 云南师范大学, 2021(08)
  • [9]基于核心素养的主题教学研究 ——以初中方程为例[D]. 胡艳. 重庆三峡学院, 2021(08)
  • [10]磨的是课,成的是人 ——数学评优课磨课活动的研究[D]. 朱晨菲. 华东师范大学, 2021(08)

标签:;  ;  ;  ;  ;  

如何在数学教学中实施“创新教育”
下载Doc文档

猜你喜欢